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ABSTRACT
Motivation: Sigma factors regulate the expression of
genes in Bacillus subtilis at the transcriptional level.
First we assess the ability of currently available gene
regulatory network models to accurately infer gene
regulation by sigma factors from gene expression
data. Secondly, we consider improving the prediction
accuracy by combining gene expression data with
sequence information. Finally, we apply the resulting
joint predictor to discover currently unknown gene
regulations by sigma factors in Bacillus subtilis.
Methods: We determine the accuracy of sigma factor
prediction from gene expression data using a fold-
change analysis, Bayesian networks, dynamic models,
and supervised learning based on coregulation. We
show that the recently proposed method of combining a
coregulation-based prediction with sequence informa-
tion by summing the log-likelihood scores (Segal et al.,
2003), at least in our case, effectively ignores sequence
information. We propose to use logistic regression to
achieve a better balance between sequence and gene
expression information.
Results: We show that the supervised learning method
based on coregulation yields the most accurate pre-
diction of sigma factors from gene expression data.
We demonstrate in a leave-one-out experiment that
the logistic regression model effectively combines
gene expression data and sequence information.
In a genome-wide search, highly significant logistic
regression scores were found for several genes whose
transcriptional regulation is currently unknown, allowing
us to identify with high confidence the sigma factors
regulating these genes. We provide the corresponding
RNA polymerase binding sites to enable a straightfor-
ward experimental verification of our predictions.
Keywords: Gene regulation, Bayesian network, fold-
change analysis, sigma factors, Bacillus subtilis
Contact: Email: mdehoon@ims.u-tokyo.ac.jp;
Telephone: +81-3-54495615; Fax: +81-3-54495442

INTRODUCTION
The development of cDNA microarray tech-
nology has provided a huge amount of gene
expression data. The methodology for analyzing
such data is still in development. Recently,
systems biology approaches have become in-
creasingly popular, where the gene regulatory
network and the interaction between genes are
of prime interest.

Gene regulatory relations can be studied
in gene disruptant experiments, in which the
expression levels of all genes are measured
after the expression of a transcription factor
has been disrupted. A fold-change analysis
is then performed to identify genes that are
significantly up- or down-regulated due to the
disruption, which may indicate that those genes
are regulated by the transcription factor.

In time-course gene expression experiments,
the expression levels of all genes are mea-
sured as a function of time following some
perturbation in the environment of the organ-
ism. Dynamic models of gene regulation, such
as differential equation models (Chenet al.,
1999) and dynamic Bayesian networks (Ong
et al., 2002; Kim et al., 2003), take the time-
dependence of the measurements into account
by describing the gene expression levels at each
time point in terms of the gene expression levels
at the previous time point.

Alternatively, Bayesian networks inferred
from cDNA microarray data have been pro-
posed as a model of gene regulation (Friedman
et al., 2000; Imotoet al., 2002a,b; Pe’eret al.,
2001). A Bayesian network shows how the
expression level of each gene depends con-
ditionally on a small set of parent genes.
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Bayesian networks can be inferred from a set
of static (time-independent) gene expression
measurements of cell cultures acclimated to
different environmental conditions, from gene
disruptant experiments, as well as from time-
course experiments, albeit without taking the
time-dependence into account.

A fourth approach of inferring gene regulatory
relations from expression data is based on
coregulation. As genes regulated by the same
transcription factor are likely to have similar
gene expression patterns, unsupervised learning
in the form of clustering gene expression data
allows us to find coregulated genes (Segalet al.,
2003). In general, such an analysis will not
reveal the corresponding transcription factor.
However, when we are interested in finding
additional genes regulated by a known tran-
scription factor, coregulation can be applied
as a supervised learning approach. Here, we
compare the expression profile of a new gene to
the expression profiles of the genes known to be
regulated by that transcription factor.

Clustering gene expression data is often fol-
lowed by searching for sequence motifs in the
upstream region of coregulated genes. Segal
et al. (2003) recently proposed to combine
gene expression data and sequence information
in a single Bayesian score function; Tamada
et al. (2003) proposed a similar method in
the framework of Bayesian networks. In this
work, we found that in practice Segal’s method
may lead to an overestimation of the predictive
power of gene expression data, to a degree that
the sequence motif information is effectively
ignored. To find a better balance between se-
quence information and gene expression data,
we propose to use a logistic regression model to
combine the two data sources.

Whereas the algorithmic aspects of these
methods to infer gene regulatory relations have
been well studied in the past, it is still unknown
if these methods of inferring gene regulatory
networks yield biologically correct results. Pre-
vious biological support of these methods has
been limited to finding one or a few examples
where the predicted regulatory relations agreed
with biologically known results. To be able
to predict currently unknown gene regulatory
relations, however, this does not suffice, as we
cannot known beforehand which of the large
number of predicted gene regulatory relations in
an inferred network is correct.

In this paper, we therefore perform a validation
study of methods to infer gene regulatory rela-
tions from expression and sequence information.
Using the four methods described above, we pre-
dict sigma (transcription) factors inBacillus sub-
tilis from the combined gene expression data of
ten time course experiments and 99 gene dis-
ruptant experiments for genes whose sigma fac-
tor is known experimentally. Sigma factors are
transcription factors that bind to the RNA poly-
merase to enable it to find the appropriate DNA
binding sequence upstream of the transcription
start site. Without a sigma factor, the RNA poly-
merase would bind to random sites on the DNA.
Here, we consider the sigma factorsσD, σE, σG,
σH, σK, σL, σW, andσX, which perform partic-
ular biological functions in the cell. We do not
include the general sigma factorsσA and σB,
as well as several minor sigma factors with few
known regulated genes.

This particular biological validation study
is appropriate for four reasons. First, a sigma
factor is needed for transcription for almost all
genes inBacillus subtilis. Accordingly, sigma
factors tend to regulate a fairly large number
of genes, many of which are known for the
Bacillus subtilisgenome, such that a meaningful
leave-one-out analysis becomes feasible. Sec-
ondly, prokaryotes have simpler mechanisms
of gene regulation than eukaryotes. As the
biological validity of gene regulatory network
inference is not well established, it is appropri-
ate to first analyze a simpler prokaryotic system
instead of a eukaryotic system. Third, a large
amount of gene expression data is available for
Bacillus subtilis. Lastly, as in prokaryotes genes
belonging to the same operon are transcribed
into a single mRNA molecule, we can average
the gene expression ratios over each operon
to reduce the adverse effects of noise in the
measurements.

In this work, we found that Bayesian network
and dynamic models fail to accurately predict
gene regulation by sigma factors, while coregu-
lation is about 76% accurate in a leave-one-out
analysis. Although sequence motif information
by itself yields a prediction accuracy of 73%,
combining gene expression data and sequence
motif information by adding their likelihood
scores, as proposed by Segalet al.(2003), barely
improved the prediction accuracy. However, us-
ing a logistic regression model to combine the
two likelihood scores yielded a better balance
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between gene expression data and sequence
motif information and resulted in a prediction
accuracy of 85% in a leave-one-out analysis.

Using the score functions derived by logistic
regression, we searched the completeBacillus
subtilis genome for additional genes that are
regulated by the sigma factors under considera-
tion. We calculate the logistic regression scores
for genes known not to be regulated by a given
sigma factor to assess the statistical significance
of the newly predicted regulatory relations. By
providing both the tentative sigma factor as
well as the predicted binding site of the RNA
polymerase-sigma factor complex, we enable a
straightforward experimental verification of our
prediction results.

Lastly, we note that a single paper in the bio-
logical literature typically describes one experi-
ment in which only one gene regulatory relation
is demonstrated. The gene regulatory relations
newly predicted in this paper therefore demon-
strate the power of genome-wide data to reveal
the gene regulatory network.

METHODS
Fold-change analysis
In a fold-change analysis, we calculate by
which factor the expression of a particular gene
changes following the disruption of a transcrip-
tion factor. Here, we consider the change in the
gene expression if one of the sigma factors is
disrupted. The sigma factor whose disruption
leads to the largest decrease in the expression
of the regulated gene is predicted to drive the
transcription of that gene.

Dynamic models
Dynamic models describe time-course data
only, taking the time information explicitly into
account. Several dynamic models of gene regu-
latory networks inferred from time-course gene
expression data have been suggested previously.
Murphy & Mian (1999) showed that most of the
existing discrete time models can be considered
as special cases of the general class of dynamic
Bayesian networks. Here, we derive a dynamic
model from a set of stochastic differential equa-
tions (Chenet al., 1999; De Hoonet al., 2003),
as they allow a convenient treatment of gene
expression measurements made at unequal time
intervals.

In a stochastic differential equation model, the
rate of change of the gene expression levels

d
dt

x (t) at timet is a function of the expression
levelsx (t) at that time point plus a noise term:

d
dt

x (t) = g (x (t)) + σ̇ · ε (t) , (1)

where the function g effectively describes
the gene regulatory network,ε (t) is a
random process with unit variance, and
σ̇ = diag (σ̇1, . . . , σ̇m) is a diagonal matrix

with units of [time]−1. The differential equation
can be approximated by a difference equation:

xi+1 − xi

ti+1 − ti
= g (xi) + σ̇ · εi, (2)

For measurements taken at equal time intervals
(∆t = ti+1− ti independent ofi), this reduces to
a dynamic Bayesian network (Kimet al., 2003).
Ong et al. (2002) consider a similar model, in
which the gene expression data are discretized
to binary values, and the gene interactions
are described by conditional probability tables.
The deterministic models proposed previously
(Liang et al., 1998; Akutsuet al., 1999, 2000)
are based on Eq. (2) without the error term,
after discretizing the expression data. The model
proposed by Van Somerenet al. (2000) (xi+1 =
M · xi where M is a square matrix) can be
regarded as a special case of Eq. (2), after
dropping the noise term and assuming equal
time intervals and linear interactions.

In our implementation of a dynamic model, we
chose for a linear model with continuous vari-
ables. In the validation study described below,
a nonlinear dynamic model (Kimet al., 2003)
yielded less accurate predictions of gene regu-
lation by sigma factors. This may be due to the
larger number of parameters that need to be es-
timated in a nonlinear model, leading to a less
accurate parameter estimation than in a linear
model. In this paper, we therefore restrict our-
selves to linear models.

Bayesian networks
We denote the joint probability distribution of
the gene expression levelsxj,i, j ∈ {1, . . . ,m}
of m genes measured in experimenti as
P (x1,i, x2,i, . . . , xm,i). In the Bayesian network,
we assume that this joint probability distribution
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can be decomposed as

P (x1,i, x2,i, . . . , xm,i) =
m∏

j=1

Pj (xj,i| {xj′,i; j
′ ∈ Pa (j)}) , (3)

wherePa (j) represents the set of parent genes
(regulators) of genej. This decomposition can
then be represented as a directed acyclic graph.

To apply this formula in practice, we need to
choose an appropriate mathematical form for the
gene regulations encoded by the right hand side
of this equation. Friedmanet al.(2000) proposes
to either discretize the gene expression data and
represent their dependencies as a truth table, or
use continuous variables whose dependencies
are described by linear relations. To avoid the
information loss associated with discretizing
gene expression data, we chose the latter option.
The Bayesian network model then essentially
looks for linear correlations between parent
genes and child genes. The Bayesian network
can be applied to expression data from both gene
disruptant and time course experiments, though
in the latter case no use is made of the time
information.

Inference based on coregulation
The three inference methods described above
consider the parent gene directly to discover
gene regulatory relations. We may also be able
to find gene regulatory relations by comparing
the gene expression profiles of different child
genes to each other. This approach is usually
applied in an unsupervised setting, in which
gene expression data are clustered based on the
similarity in their gene expression profile. If, for
a given transcription factor, a large number of
regulated genes are already known, we can also
predict gene regulatory relations by comparing
the gene expression profiles of genes in the same
regulon to the gene expression profile of a new
gene. We can then infer gene regulatory relations
in a supervised setting by making use of known
regulatory relations.

Segalet al. (2003) describes the gene expres-
sion measurements of coregulated genes by a
normal distribution, assuming that measure-
ments in then different experiments or time
points are statistically independent:

p(s) (xj,1, xj,2, . . . , xj,n) =
n∏

i=1

p
(s)
i (xj,i) . (4)

Here,xj,i is the expression log-ratio measured in
experimenti of genej regulated by sigma factor
s, andp

(s)
i (xj,i) is a normal distribution:

p
(s)
i (xj,i) =

1

σ
(s)
i

√
2π

exp


−1

2

n∑
i=1

(
xj,i − µ

(s)
i

σ
(s)
i

)2

 .

(5)
For the regulon of each sigma factors, we then

calculate the meanµ(s)
i and standard deviation

σ
(s)
i in each experimenti, and calculate the log-

likelihood of a new gene, given its expression
measurementsyi, to belong to the same regulon
as

L(s)
expr (y1, y2, . . . , yn) =−n

2
ln (2π)−

n∑
i=1

ln σ
(s)
i

− 1

2

n∑
i=1

(
yi − µ

(s)
i

σ
(s)
i

)2

. (6)

This likelihood score is calculated for the regu-
lon of each sigma factors to determine which
regulon agrees best in terms of gene expression
with the gene expression profile of the new gene.

In practice, we found that due to the reduced
effect of outliers, estimating the standard devia-
tion σ from the combined experiments via

σ(s) =

√√√√ 1

n

n∑
i=1

(
σ

(s)
i

)2

, (7)

yielded a more accurate prediction of regulation
by sigma factors. We therefore applied Eq. (6)
with σ

(s)
i replaced byσ(s) in all cases.

Motif search
In addition to the gene expression data, we may
make use of the sequence motif information of
the RNA polymerase-sigma factor DNA binding
site. The motifs of these binding sites for sigma
factors consists of two parts, one located around
35 base pairs and another around 10 base pairs
upstream of the transcription start site. The
distance between the transcription start site and
the translation start site varies, but is generally
not more than about 300 base pairs. The gap
between the -35 and the -10 binding motifs can
differ for different genes in the same regulon, but
not by more than one or two base pairs or so.
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Sigma factor Binding motif

σD TAAA (13-15)GCCGATATAA
σE GCATATTT (12-14)CATACAAT
σG GCATA (17-18)CATACTA
σH GAAGGAATT(14-15)GAAT
σK AC (17-19)CATATGAT
σL TGGCA (5) CTTGCAT
σW TGAAACCTT (13-14)CGTATA
σX TGAAAC (16-17)CGTCTA

Table 1. The consensus sequence of the DNA binding motifs for the
RNA polymerase-sigma factor binding site for the eight sigma factors
under consideration. The left motif is located around 35 base pairs in
front of the transcription start site (except forσL), while the right motif
is located at about -10 base pairs.

Table 1 shows the consensus motifs for the
sigma factors under consideration here, as de-
termined using Bioprospector (Liuet al., 2001)
from the DBTBS database of transcriptional
binding sequences inBacillus subtilis(Makita
et al., 2004). Whereas some sigma factors, such
as σL, can be distinguished easily from other
sigma factors by virtue of its distinct sequence
motif, other sigma factors such asσD and σE

have similar motifs, which may not be easily
distinguished based on motif information alone.

The motif sequences can be described statis-
tically by a position specific score matrixM (s)

k,p

(Durbin et al., 1998) for sigma factors, which
lists the log-odds score of finding a nucleotide
p at positionk in the binding sequence motif
of sigma factors. The log-likelihood, relative to
the background sequence probabilities, for a se-
quenceS[k] is then

L
(s)
motif (S) =

K∑

k=1

M
(s)
k,S[k], (8)

where K is the length of the motif. For the
sequence motifs for RNA polymerase-sigma
factor binding sites, we added the score of the
-35 and the -10 motifs, and allowed the gap to
vary according to the currently known binding
sites.

The position specific score matrix was cal-
culated from the known binding motifs of the
genes in the regulon of each sigma factor, as
listed in the DBTBS database. For the matrix
calculation based onN known binding sites, we

added
√

N pseudocounts, using a background
probability of 0.3185 for A and T, and 0.1815
for C and G.

Combining gene expression and motif
information
Segal et al. (2003) proposed to add the log-
likelihood scores based on the gene expression
data and the motif information into a single log-
likelihood score:

L(s) = L(s)
expr (y1, . . . , yn) + L

(s)
motif (S) . (9)

Here,L(s)
motif (S) is the log-likelihood score for

the highest-scoring sequence motifS in the 300
base pair region upstream of the translation start
site. By combining the two information sources,
we expect to be able to gain a higher prediction
accuracy. For sigma factors such asσL, having a
distinctive sequence motif, we expect the second
term to be dominant, while the gene expression
score may help us to distinguishσD, σE, which
have similar sequence motifs. We will revisit this
equation below, where we show that Eq. (9) does
not achieve the optimal balance between gene
expression data and sequence information, and
may even essentially ignore the latter.

ASSESSMENT OF BIOLOGICAL VALIDITY
Bayesian network models have been predicted
previously from measured gene expression
data ofSaccharomyces cerevisiae(Imoto et al.,
2002a; Kimet al., 2003; Tamadaet al., 2003;
Friedmanet al., 2000) andE. coli (Ong et al.,
2002). The validity of those network predictions
was assessed heuristically by showing an exam-
ple of a gene regulatory relation that was found
correctly by the model. However, for a useful
prediction of gene regulatory relations, we need
to know how many of the hundreds or thousands
of gene regulatory relations in such an inferred
network are correct. While a considerable effort
has been aimed at investigating the algorithmic
aspects of regulatory network inference, the
biological validity of the inferred networks has
not yet been clearly demonstrated.

Here, we consider the sigma factorsσD, σE,
σG, σH, σK, σL, σW, σX in Bacillus subtilis.
A large number of genes have been shown
experimentally to be regulated by each of these
sigma factors, as listed in the DBTBS database
(Makita et al., 2004). For each gene that is
currently known to be regulated exclusively
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by one sigma factor (and possibly by other,
non-sigma transcription factors), we calculate
a Bayesian network, a dynamic model, and a
coregulation-based model from the combined
gene expression data of ten time-course experi-
ments (Table 2). Sequence motif information is
ignored for now.

The gene expression levels were measured
twice at each time point. We calculated the
average background noise level for the red (cy5)
and green (cy3) channel separately for each
data set. Gene expression measurements where
the fluorescence level is less than the average
background level in either channel are removed
from the data set, as they will be dominated by
noise. Global normalization is then applied by
dividing the measured fluorescence levels of the
remaining genes by their sum in each channel.
We note that in a previous prediction of the
operon structure ofBacillus subtilisusing these
expression data, we found a 77.3% accuracy
level (De Hoonet al., 2004), which is a typical
accuracy level for operon prediction.

Table 3 shows the frequency that each sigma
factor was estimated correctly by each network
inference method. The dynamic model yielded
44 correct predictions out of 189, an accuracy
of 23%. While it is statistically significant
(p = 2.6 × 10−6) to predict the sigma factor
correctly for 44 out of 189 genes, given the low
rate of accurate predictions the dynamic model
is unlikely to be a good predictor of currently
unknown gene regulatory relations. Bayesian
networks perform somewhat better with a
prediction accuracy of 25%. This accuracy
level could only be attained when the Bayesian
network model was applied to normalized log-
ratios; a Bayesian network learned from gene
expression ratios directly yielded a much lower
prediction accuracy. The coregulation-based
prediction yields the highest prediction accuracy
at 52% in a leave-one-out analysis, in which for
the prediction of a genej the regulon statistics
µ

(s)
i , σ

(s)
i are recalculated after removing genej

from its regulon.
To improve the prediction accuracy of the

Bayesian network and the coregulation-based
approach, we augmented our data set with
the gene expression measurements of 99 gene
disruptant experiments, listed in Table 4. Both
methods were then applied to the gene expres-
sion data of the combined 174 microarrays.
As shown in Table 5, the prediction accuracy

Table 3. Number of correct sigma factor predictions for the dynamic
model, the Bayesian network model, and the coregulation-based model.
For these predictions, only the time-course gene expression data were
used.

Sigma
factor

Total Dynamic
model

Bayesian
network

Coregulation-
based model

σD 16 2 12 12
σE 51 17 3 21
σG 25 1 0 7
σH 40 5 5 27
σK 23 10 9 13
σL 6 0 4 4
σX 4 0 2 1
σW 24 9 12 14

Total 189 44 47 99
Percentage 23% 25% 52%

p-value 3.1× 10−5 2.6× 10−6 1.0× 10−39

Table 4.Disrupted gene in each experiment. The genesdegU, sigF, sigW,
andvegwere each disrupted in two experiments, as indicated here.

abh cspB iolR rocR sigZ yesS
abrB ctsR ycsO sacT sinR yhjM
acoR ydbG lacR senS soj yotL
ahrC degU(2×) levR sigB splA yqfV
alsR deoR lexA sigD spo0A ytzE
ansR yjmH lmrA sigE spo0J yufL
araR yqkL lrpA sigF (2×) spoIIIC yugG
azlB gerE lrpC sigG spoIIID yurK
ccpA glcR yqhN sigH spoVT yvkB
yyaG glcT mtrB ykoZ tenA yvrH
ykuM glnR paiA sigL tnrA ywaE
citR gntR paiB yhdM treR yyaA
citT gutR ygaG sigV veg(2×) yybA
codY hpr phoP sigW(2×) xylR yybE
comA hrcA purR sigX ybbH yydK
comK hutP pyrR sigY ybfA

increased for both methods upon adding the
gene disruptant data. The Bayesian network
model yielded an accuracy of 42%, while the
coregulation-based model gave the correct
sigma factor prediction for 76% of the genes.
The fold-change analysis, based only on the
expression data from the gene disruptant exper-
iments in which one of the eight sigma factors
was disrupted, yielded a prediction accuracy of
54%.
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Experiment Measurement time points in minutes

Cold shock 0, 5, 10, 30, 60, 120
Competence 0, 60, 120, 180, 240, 300, 360
Glucose, glutamine added during sporulation 0, 60, 120, 180, 240, 300
Glucose limitation 0, 60, 125, 180, 240
Heat shock 0, 5, 10, 30, 60
Increased aminoacid availability 0, 30, 60, 120, 210, 300, 420, 540
Phosphate, glucose starvation 0, 60, 120, 180, 240, 300, 360, 420
Phosphate limitation 0, 55, 115, 175, 235, 295
Salt stress 0, 5, 10, 30, 60
Sporulation 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450, 480, 510, 540

Table 2. The time points at which expression measurements were made for the ten time-course experiments ofBacillus subtilisconsidered in this
paper.

Table 5. Number of correct sigma factor predictions using sequence motif information and gene expression information, using both the time-course
and the gene-disruptant expression data. (*) For the fold-change analysis, only the gene expression data of the gene disruptant experiments were used
in which one of the eight sigma factors was disrupted.

Sequence Expression data Sequence and expression data

Sigma factor Total Motif Fold-change (*) Bayesian network CoregulationSum of likelihood scores Logistic regression

σD 16 14 15 13 13 13 13
σE 51 31 35 17 39 39 43
σG 25 2 16 1 13 13 19
σH 40 21 33 5 35 35 35
σK 23 6 6 21 18 18 19
σL 6 6 6 2 4 4 6
σX 4 1 3 1 1 2 2
σW 24 21 24 20 21 22 24

Total 189 138 102 80 144 146 161
Percentage 73% 54% 42% 76% 77% 85%

Combining gene expression and motif
information, revisited
The prediction accuracy of the coregulation-
based model can be improved further by adding
the likelihood scores of the gene expression
data and the sequence information (Eq. (9)), as
proposed by Segalet al. (2003). From Table 5,
we see that the sequence information alone gives
a prediction accuracy of about 73%, just slightly
lower than the combined gene expression data.
This is in agreement with the previous result
that sequence information by itself can give a
rather good prediction of regulation by sigma
factors (Yadaet al., 1997). We would therefore
expect that the combination of gene expression

data and sequence motif information would lead
to an improved prediction accuracy. However,
as Table 5 shows, the combined score achieved
a prediction accuracy of 77%, just barely larger
than the gene expression data by themselves.
It is particularly surprising that the prediction
accuracy does not improve forσL, whose se-
quence motif is easily distinguishable from the
sequence motifs of the other sigma factors.

The failure to effectively make use of sequence
motif information is caused by the assumptions
underlying Eq. (9). Particularly, Eq. (4) assumes
that the gene expression data from different
experiments are statistically independent. This
may be a valid assumption if the perceived
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randomness in the expression data is caused by
measurement errors only. However, in reality
the variability in the expression measurements,
represented byσ(s)

i , includes both measurement
errors as well as biological knowledge that is
either unknown or ignored, such as additional
transcription factors regulating a gene. In Eq.
(4), each additional microarray experiment is
then incorrectly assumed to contribute an equal
amount of new information as the previous
experiments. If the number of microarrays is
large, as in our case, the likelihood score of the
expression data will overwhelm the sequence
motif score, which is then effectively ignored.

A common statistical technique to correct this
situation is logistic regression (Hastieet al.,
2001). In a logistic regression model, we treat
the gene expression score and the sequence
motif score as two random variables. The prob-
ability of belonging to the regulon of sigma
factors is given by the logistic function:

Pr (gene belongs to regulons|Lexpr, Lmotif) =

exp
(
w

(s)
0 + w

(s)
exprL

(s)
expr + w

(s)
motifL

(s)
motif

)

∑
s′ exp

(
w

(s′)
0 + w

(s′)
exprL

(s′)
expr + w

(s′)
motifL

(s′)
motif

) .

Accordingly, the log-likelihood score is again
the sum of the gene expression score and the
sequence motif score, but now each is preceded
by a weight:

L(s) = w
(s)
0 + w(s)

expr · L(s)
expr + w

(s)
motif · L(s)

motif

− ln

[∑

s′
exp

{
w

(s′)
0 + w(s′)

expr · L(s′)
expr

+w
(s′)
motif · L(s′)

motif

}]

The weights can be estimated by maximizing
this likelihood score, given the gene expression
score and sequence motif scores for the genes
whose sigma factor is known. As the likelihood
score is a nonlinear function of the weights,
maximizing this score is not straightforward.
However, we found that in practice a simple
Newton-Raphson method starting from zero
weights converges quickly.

The weights were recalculated each time a
gene was removed for the leave-one-out analysis
of this weighted score function. As shown in
Table 5, the logistic regression score yielded

an improved prediction accuracy of 85%. As
expected, the logistic regression model is able to
recover the 100% accuracy rate for theσL tran-
scription factor. ForσE, σH, andσK, for which
the gene expression data gave a more accurate
prediction than the sequence motif information,
the logistic regression score maintains the pre-
diction accuracy of the gene expression data
for σH, and yields a prediction accuracy that
surpasses those of the motif information and
the gene expression data separately forσE and
σK. As shown in Table 5, adding the likelihood
scores directly did not improve the prediction
accuracy forσE, σH, andσK.

GENOME-WIDE SEARCH FOR GENES
REGULATED BY SIGMA FACTORS
We calculated the score function based on
logistic regression for all operons in theBacillus
subtilis genome in order to find currently un-
known gene regulations by sigma factors. As for
the most part the operon structure ofBacillus
subtilishas not been determined experimentally,
we use the computationally predicted operon
structure instead (De Hoonet al., 2004), leading
to a total of 2214 operons.

The logistic regression score was calculated
for each sigma factor, both for operons that are
known to belong to the corresponding regulon,
and for operons known to be regulated by other
sigma factors. This allows us to calculate thep-
value of the logistic regression score for newly
predicted gene regulations by a given sigma
factor, under the null hypothesis that a gene is
not regulated by that sigma factor.

Table 6 shows the currently unknown pre-
dicted gene regulations by sigma factors, for
which the predicted score was statistically sig-
nificant at a significance level ofα = 5 × 10−4.
These genes are characterized by both a high
similarity in gene expression with other genes
regulated by the predicted sigma factor, and a
binding sequence motif that is highly consistent
with the consensus sequence. With the putative
DNA binding sequences available, an experi-
mental validation of these predictions should be
straightforward.

Of particular interest is theyusZ-mrgAoperon
and theyvbX-yvbY-yvfW-yvfV-yvfU-yvfToperon,
which are both predicted to be regulated byσL.
So far, only six operons are known experimen-
tally to be regulated byσL. These six operons
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Operon Sigma factor Motif
Approximate distance between
transcription and translation start sites

ybdO σD TAA T — 15 bp —GCCGATA AAA 25
deoR-yxxB-yxeR σD TAA C — 13 bp —GCCGATATAA 85

yqjV-yqjU σD TCAT — 13 bp —GCCGATAT GA 250
yusZ-mrgA σL TGGCC — 5 bp —CTTGCA G 130

yvbX-yvbY-yvfW-yvfV-yvfU-yvfT σL TGGCC — 5 bp —CTTCCGT 265
ypuA σW TGAAACCTG C — 14 bp —CGTCTA 80

Table 6.Newly predicted gene regulations by sigma factors inBacillus subtilis. These predictions are statistically significant to a level ofα = 5×10−4.
In the motifs, bold characters are consistent with the consensus motif (compare to Table 1).

have identical binding motifs, except forrocG,
whose binding sequenceTGGTA — 5 bp —
CTTGCAT deviates in one position from the
consensus motif. Our newly predicted operon
yusZ-mrgA with the binding sequence motif
TGGCC — 5 bp — CTTGCA G deviates in
two places, while the binding motif ofyvbX-
yvbY-yvfW-yvfV-yvfU-yvfT, TGGCC — 5 bp —
CTTCCGT, deviates in three positions. The
strong similarity in gene expression to otherσL

regulated genes, together with the motif simi-
larity, leads to a highly significant prediction. A
simple experimental verification of these pre-
dictions is possible with the predicted binding
sites of theσL-RNA polymerase binding sites
listed in Table 6.

DISCUSSION
To our knowledge, this is the first thorough
assessment of the biological validity of gene
regulatory relations inferred from genome-wide
data. We found that coregulation is a consid-
erably better predictor of gene regulation by
sigma factors inBacillus subtilisthan Bayesian
networks, dynamic models, or a fold-change
analysis. A Bayesian network performs slightly
better than a dynamic model, particularly be-
cause it allows the use of both time-course gene
expression data and gene disruptant informa-
tion. A fold-change analysis, though based on a
much smaller amount of gene expression data,
performs better than Bayesian networks and dy-
namic models. However, a fold-change analysis
is possible only if a disruption experiment for
the transcription factor under consideration is
available, while Bayesian networks, dynamic
models, and coregulation do not have this

requirement.
The superior performance of sigma factor

prediction from coregulation is likely due to
the larger amount of expression data on which
it depends. For example, the regulon ofσE in
our study contains 51 genes, whereas Bayesian
networks and dynamic models make use of the
expression data of the transcription factor only.
Here, we were able to make use of coregulation
in a supervised fashion because of the large
number of regulated genes known for each
sigma factor. When the aim is to find new
transcription factors, it will be necessary to
consider the gene expression data of the parent
gene directly, either by a Bayesian network,
a dynamic model, or a fold-change analysis.
Currently, such models predict gene regulations
based on the parent-child relation only. Given
our prediction accuracies, it may be advisable to
include similarity to coregulated genes explicitly
in these models.

The prediction accuracies can be improved
further by including DNA sequence motif infor-
mation as an additional predictor in the model,
as recently proposed by Segalet al. (2003) and
Tamadaet al. (2003). It is important to balance
the gene expression and the sequence motif
information carefully to optimize the predictive
power of the joint score. As we have shown,
simply adding the log-likelihood scores for
each predictor (Segalet al., 2003) effectively
ignores sequence information if the number of
microarrays is large. Instead, we estimate the
relative predictive power of gene expression
and sequence motif information from the data
themselves using a logistic regression model,
leading to an effective use of both information
sources and an improved prediction accuracy.
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We note that the logistic regression model typ-
ically increased the relative importance of the
sequence information by about a factor of ten
compared to directly adding the log-likelihood
scores.

We then performed a genome-wide search
using the score function derived from the logistic
regression model to find additional genes that
are regulated by each sigma factor. A very high
score was found for several genes, for which
we can be confident that our predictions are
correct. For genes with lower scores, it becomes
progressively more difficult to decide if the
prediction is correct or if the score is based on
chance. However, since our method identifies
the location of the binding site of the sigma
factor-RNA polymerase complex as part of the
sigma factor prediction, a simple experimental
verification of the predictions is possible.

REFERENCES
Akutsu, T., Miyano, S. & Kuhara, S. (1999). Identification of

genetic networks from a small number of gene expression
patterns under the boolean network model. InProc. Pac.
Symp. on Biocomputing, volume 5. pp. 17–28.

Akutsu, T., Miyano, S. & Kuhara, S. (2000). Inferring quali-
tative relations in genetic networks and metabolic pathways.
Bioinformatics, 16, 727–734.

Chen, T., He, H. L. & Church, G. M. (1999). Modeling gene
expression with differential equations. InProc. Pac. Symp.
on Biocomputing, volume 4. pp. 29–40.

De Hoon, M., Imoto, S., Kobayashi, K., Ogasawara, N. &
Miyano, S. (2003). Inferring gene regulatory networks from
time-ordered gene expression data ofBacillus Subtilisusing
differential equations. InProc. Pac. Symp. on Biocomputing,
volume 8. pp. 17–28.

De Hoon, M., Imoto, S., Kobayashi, K., Ogasawara, N. &
Miyano, S. (2004). Predicting the operon structure of
Bacillus Subtilis using operon length, intergene distance,
and gene expression information. InProc. Pac. Symp. on
Biocomputing, volume 9. pp. 276–287.

Durbin, R., Eddy, S., Krogh, A. & Mitchison, G. (1998).
Biological sequence analysis. Cambridge University Press,
Cambridge, UK.

Friedman, N., Linial, M., Nachman, I. & Pe’er, D. (2000). Using
Bayesian networks to analyze expression data.Journal of
Computational Biology, 7, 601–620.

Hastie, T., Tibshirani, R. & Friedman, J. (2001). The Elements of
Statistical Learning: Data Mining, Inference, and Prediction.
Springer-Verlag, New York.

Imoto, S., Goto, T. & Miyano, S. (2002a). Estimation of genetic
networks and functional structures between genes by using
Bayesian networks and nonparametric regression. InProc.
Pac. Symp. on Biocomputing, volume 7. pp. 175–186.

Imoto, S., Kim, S., Goto, T., Aburatani, S., Tashiro, K.,
Kuhara, S. & Miyano, S. (2002b). Bayesian network

and nonparametric heteroscedastic regression for nonlinear
modeling of genetic network. InIEEE Computer Society
Bioinformatics Conference (CSB2002). pp. 219–227.

Kim, S., Imoto, S. & Miyano, S. (2003). Dynamic Bayesian net-
work and nonparametric regression for nonlinear modeling
of gene networks from time series gene expression data. In
International Workshop on Computational Methods in Sys-
tems Biology (CMSB2003), Springer Verlag Lecture Notes in
Computer Science, volume 2602. pp. 104–113.

Liang, S., Fuhrman, S. & Somogyi, R. (1998). REVEAL, a
general reverse engineering algorithm for inference of genetic
network architectures.Proc. Pac. Symp. on Biocomputing, 3,
18–29.

Liu, X., Brutlag, D. & Liu, J. (2001). Bioprospector: Discovering
conserved dna motifs in upstream regulatory regions of co-
expressed genes. InProc. Pac. Symp. on Biocomputing,
volume 6. pp. 127–38.

Makita, Y., Nakao, M., Ogasawara, N. & Nakai, K. (2004).
DBTBS: Database of transcriptional regulation inBacillus
subtilisand its contribution to comparative genomics.Nucleic
Acids Research, 32, D75–D77. http://dbtbs.hgc.jp.

Murphy, K. & Mian, S. (1999). Modelling gene expression
data using dynamic Bayesian networks. Technical report,
University of California, Berkeley.

Ong, I. M., Glasner, J. D. & Page, D. (2002). Modelling reg-
ulatory pathways in E. coli from time series expression pro-
files. In Proceedings of the Tenth International Conference
on Intelligent Systems for Molecular Biology (ISMB 2002),
Bioinformatics Supplement 1. pp. 241–248.

Pe’er, D., Regev, A., Elidan, G. & Friedman, N. (2001).
Inferring subnetworks from perturbed expression profiles.
In Proceedings of the Ninth International Conference on
Intelligent Systems for Molecular Biology (ISMB 2001),
Bioinformatics Supplement 1. pp. 215–224.

Segal, E., Yelensky, R. & Koller, D. (2003). Genome-wide
discovery of transcriptional modules from DNA sequence
and gene expression. InProceedings of the Ninth Interna-
tional Conference on Intelligent Systems for Molecular Bi-
ology (ISMB 2003), Bioinformatics Supplement 1. pp. i273–
i282.

Tamada, Y., Kim, S., Bannai, H., Imoto, S., Tashiro, K., Kuhara,
S. & Miyano, S. (2003). Estimating gene networks from gene
expression data by combining Bayesian network model with
promoter element detection. InProceedings of the Second
European Conference on Computational Biology. pp. ii227–
ii236.

Van Someren, E. P., Wessels, L. F. A. & Reinders, M. J. T.
(2000). Linear modeling of genetic networks from experi-
mental data. InProceedings of the Eighth International Con-
ference on Intelligent Systems for Molecular Biology, vol-
ume 8. pp. 355–366.

Yada, T., Totoki, Y., Ishii, T. & Nakai, K. (1997). Functional
prediction ofBacillus subtilisgenes from their regulatory se-
quences. InProceedings of the Fifth International Confer-
ence on Intelligent Systems for Molecular Biology. pp. 354–
357.

10


