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ABSTRACT

Motivation: Sigma factors regulate the expression of
genes in Bacillus subtilis at the transcriptional level.
First we assess the ability of currently available gene
regulatory network models to accurately infer gene
regulation by sigma factors from gene expression
data. Secondly, we consider improving the prediction
accuracy by combining gene expression data with
sequence information. Finally, we apply the resulting
joint predictor to discover currently unknown gene
regulations by sigma factors in Bacillus subtilis.
Methods: We determine the accuracy of sigma factor
prediction from gene expression data using a fold-
change analysis, Bayesian networks, dynamic models,
and supervised learning based on coregulation. We
show that the recently proposed method of combining a
coregulation-based prediction with sequence informa-
tion by summing the log-likelihood scores (Segal et al.,
2003), at least in our case, effectively ignores sequence
information. We propose to use logistic regression to
achieve a better balance between sequence and gene
expression information.

Results: We show that the supervised learning method
based on coregulation yields the most accurate pre-
diction of sigma factors from gene expression data.
We demonstrate in a leave-one-out experiment that
the logistic regression model effectively combines
gene expression data and sequence information.
In a genome-wide search, highly significant logistic
regression scores were found for several genes whose
transcriptional regulation is currently unknown, allowing
us to identify with high confidence the sigma factors
regulating these genes. We provide the corresponding
RNA polymerase binding sites to enable a straightfor-
ward experimental verification of our predictions.
Keywords: Gene regulation, Bayesian network, fold-
change analysis, sigma factors, Bacillus subtilis
Contact: Email: mdehoon@ims.u-tokyo.ac.jp;
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INTRODUCTION

The development of cDNA microarray tech-
nology has provided a huge amount of gene
expression data. The methodology for analyzing
such data is still in development. Recently,
systems biology approaches have become in-
creasingly popular, where the gene regulatory
network and the interaction between genes are
of prime interest.

Gene regulatory relations can be studied
in gene disruptant experiments, in which the
expression levels of all genes are measured
after the expression of a transcription factor
has been disrupted. A fold-change analysis
is then performed to identify genes that are
significantly up- or down-regulated due to the
disruption, which may indicate that those genes
are regulated by the transcription factor.

In time-course gene expression experiments,
the expression levels of all genes are mea-
sured as a function of time following some
perturbation in the environment of the organ-
ism. Dynamic models of gene regulation, such
as differential equation models (Chest al,
1999) and dynamic Bayesian networks (Ong
et al, 2002; Kimet al, 2003), take the time-
dependence of the measurements into account
by describing the gene expression levels at each
time point in terms of the gene expression levels
at the previous time point.

Alternatively, Bayesian networks inferred
from cDNA microarray data have been pro-
posed as a model of gene regulation (Friedman
et al, 2000; Imotoet al, 2002a,b; Pe’eet al.,
2001). A Bayesian network shows how the
expression level of each gene depends con-
ditionally on a small set of parent genes.
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Bayesian networks can be inferred from a set In this paper, we therefore perform a validation
of static (time-independent) gene expressiorstudy of methods to infer gene regulatory rela-
measurements of cell cultures acclimated tdions from expression and sequence information.
different environmental conditions, from geneUsing the four methods described above, we pre-
disruptant experiments, as well as from time-dict sigma (transcription) factors Bacillus sub-
course experiments, albeit without taking thetilis from the combined gene expression data of
time-dependence into account. ten time course experiments and 99 gene dis-
A fourth approach of inferring gene regulatory ruptant experiments for genes whose sigma fac-
relations from expression data is based oror is known experimentally. Sigma factors are
coregulation. As genes regulated by the sam#ranscription factors that bind to the RNA poly-
transcription factor are likely to have similar merase to enable it to find the appropriate DNA
gene expression patterns, unsupervised learnifgnding sequence upstream of the transcription
in the form of clustering gene expression datastart site. Without a sigma factor, the RNA poly-
allows us to find coregulated genes (Segtadl, merase would bind to random sites on the DNA.
2003). In general, such an analysis will notHere, we consider the sigma facters, o=, o,
reveal the corresponding transcription factors!, o¥, o, oW, ando®, which perform partic-
However, when we are interested in findingular biological functions in the cell. We do not
additional genes regulated by a known traninclude the general sigma factoss' and o2,
scription factor, coregulation can be appliedas well as several minor sigma factors with few
as a supervised learning approach. Here, wRnown regulated genes.
compare the expression profile of a new gene to This particular biological validation study
the expression profiles of the genes known to bé& appropriate for four reasons. First, a sigma
regulated by that transcription factor. factor is needed for transcription for almost all
Clustering gene expression data is often folgenes inBacillus subtilis Accordingly, sigma
lowed by searching for sequence motifs in thefactors tend to regulate a fairly large number
upstream region of coregulated genes. Segaf genes, many of which are known for the
et al. (2003) recently proposed to combineBacillus subtilisgenome, such that a meaningful
gene expression data and sequence informatideave-one-out analysis becomes feasible. Sec-
in a single Bayesian score function; Tamadandly, prokaryotes have simpler mechanisms
et al. (2003) proposed a similar method inof gene regulation than eukaryotes. As the
the framework of Bayesian networks. In thisbiological validity of gene regulatory network
work, we found that in practice Segal’s methodinference is not well established, it is appropri-
may lead to an overestimation of the predictiveate to first analyze a simpler prokaryotic system
power of gene expression data, to a degree thatstead of a eukaryotic system. Third, a large
the sequence motif information is effectively amount of gene expression data is available for
ignored. To find a better balance between seBacillus subtilis Lastly, as in prokaryotes genes
quence information and gene expression datdelonging to the same operon are transcribed
we propose to use a logistic regression model tinto a single mRNA molecule, we can average
combine the two data sources. the gene expression ratios over each operon
Whereas the algorithmic aspects of theseo reduce the adverse effects of noise in the
methods to infer gene regulatory relations haveneasurements.
been well studied in the past, it is still unknown In this work, we found that Bayesian network
if these methods of inferring gene regulatoryand dynamic models fail to accurately predict
networks yield biologically correct results. Pre-gene regulation by sigma factors, while coregu-
vious biological support of these methods hadation is about 76% accurate in a leave-one-out
been limited to finding one or a few examplesanalysis. Although sequence motif information
where the predicted regulatory relations agreety itself yields a prediction accuracy of 73%,
with biologically known results. To be able combining gene expression data and sequence
to predict currently unknown gene regulatorymotif information by adding their likelihood
relations, however, this does not suffice, as wecores, as proposed by Seggal.(2003), barely
cannot known beforehand which of the largeimproved the prediction accuracy. However, us-
number of predicted gene regulatory relations inng a logistic regression model to combine the
an inferred network is correct. two likelihood scores yielded a better balance




between gene expression data and sequence; (¢) at timet is a function of the expression

motif information and resulted in a prediction |é\76|5x (t) at that time point plus a noise term:
accuracy of 85% in a leave-one-out analysis. -

Using the score functions derived by logistic
regression, we searched the complBgillus —z(t)=g(z(t) +05-£(t) 1)
subtilis genome for additional genes that are dt— = =
regulated by the sigma factors under considera- _ _ _
tion. We calculate the logistic regression scoregvhere the functiong effectively describes
for genes known not to be regulated by a giverthe gene regulatory networkg (1) is a
sigma factor to assess the statistical significanceindom process with unit variance, and
of the newly predicted regulatory relations. By s —= diag(¢y,...,5,,) is a diagonal matrix

providing both the tentative sigma_factor 8Swith units of [time]_l. The differential equation

well as the predicted binding site of the RNA b . 4 by a diff o
polymerase-sigma factor complex, we enable §2n P€ approximated by a difference equation:

straightforward experimental verification of our . .
prediction results. Lip1 — L .
Lastly, we note that a single paper in the bio- tiv1 —ti g(@)+¢ & )
logical literature typically describes one experi-
ment in which only one gene regulatory relation For measurements taken at equal time intervals
is demonstrated. The gene regulatory relatlon‘e‘At = t,.1 —t, independent of), this reduces to
newly predicted in this paper therefore demon-, dynamic Bayesian network (Kiet al, 2003).
strate the power of genome-wide data to revea%ng et al. (2002) consider a similar model, in
the gene regulatory network. which the gene expression data are discretized
to binary values, and the gene interactions
METHODS are described by conditional probability tables.
Fold-change analysis The deterministic models proposed previously
In a fold-change analysis, we calculate by(Liang et al, 1998; Akutsuet al,, 1999, 2000)
which factor the expression of a particular geneare based on Eq. (2) without the error term,
changes following the disruption of a transcrip-after discretizing the expression data. The model
tion factor. Here, we consider the change in theproposed by Van Someret al. (2000) ¢, , =
gene expression if one of the sigma factors is\/ - z; where M is a square matrix) can be
disrupted. The sigma factor whose disruptionvegarded as a special case of Eq. (2), after
leads to the largest decrease in the expressiitopping the noise term and assuming equal
of the regulated gene is predicted to drive thgjme intervals and linear interactions.
transcription of that gene. In our implementation of a dynamic model, we
chose for a linear model with continuous vari-
ables. In the validation study described below,
& nonlinear dynamic model (Kiret al, 2003)

Dynamic models
Dynamic models describe time-course dat
only, taking the time information explicitly into \:q|3ed less accurate predictions of gene regu-

account. Several dynamic models of gene regUzyiqn by sigma factors. This may be due to the

g[oﬁgsg?évx%rgfa'ﬂgeregeferﬁ rgut'mgé?ggrsr%\%gﬂgl rger number of parameters that need to be es-
P 99 P Mmated in a nonlinear model, leading to a less

Murphy & Mian (1999) showed that most of the rat rameter estimation than in a linear
existing discrete time models can be consideregCCUrate parameter estimation than in a finea
odel. In this paper, we therefore restrict our-

as special cases of the general class of dynamf@ .
Bayesian networks. Here, we derive a dynamic€/ves to linear models.

model from a set of stochastic differential equa- .

tions (Cheret al, 1999; De Hooret al, 2003), Bayesian networks S

as they allow a convenient treatment of genéVe denote the joint probability distribution of

expression measurements made at unequal tinfee gene expression levels;, j € {1,...,m}
intervals. of m genes measured in experiment as
In a stochastic differential equation model, theP (xy ;, x4, ..., xmy;). In the Bayesian network,

rate of change of the gene expression levelsve assume that this joint probability distribution




can be decomposed as Here,z,; is the expression log-ratio measured in
experiment of genej regulated by sigma factor

P 29 iy dma) = s . . . .
(il’ 2 Zmi) s, andp!” (z;,) is a normal distribution:
117 @l{zyid €Pa()}), @) . o\ 2
i=1 (s) 1 1 Tji — My
pi (%) = o) A= SXP |75 Z A —
; o2 24 o,
wherePa (j) represents the set of parent genes i i=1 i
(regulators) of geng. This decomposition can (5)

then be represented as a directed acyclic graph. For the regulon of each sigma factgwe then

To apply this formula in practice, we need to (s) -
choose an appropriate mathematical form forthg?sl)cylate the meap, .and standard deviation
in each experiment and calculate the log-

gene regulations encoded by the right hand side; | ) . )
of this equation. Friedmaet al.(2000) proposes likelihood of a new gene, given its expression
to either discretize the gene expression data ari#easurementg;, to belong to the same regulon
represent their dependencies as a truth table, &S
use continuous variables whose dependencies n
are described by linear relations. To avoid they (s) — Mo - Ino®
information loss associated with discretizing™ *<P" (1,925 4n) = =5 In (27) z_: H
gene expression data, we chose the latter option. = )
The Bayesian network model then essentially 1 )

. . Yi — 1y
looks for linear correlations between parent - =] -6

¢ . 2 ()

genes and child genes. The Bayesian network i=1 g;

can be applied to expression data from both gerFhis likelihood score is calculated for the regu-

disruptant and time course experiments, thou , , )
P b g on of each sigma factos to determine which

in the latter case no use is made of the tim

information. regulon agrees best in terms of gene expression
with the gene expression profile of the new gene.
Inference based on coregulation In practice, we found that due to the reduced

The three inference methods described abo\,éﬁect of OUtIierS, eSti.mating the Standal’.d devia-
consider the parent gene directly to discoveflon o from the combined experiments via
gene regulatory relations. We may also be able

to find gene regulatory relations by comparing 1 2
the gene expression profiles of different child o®) = —Z (ai(s)) : (7)
genes to each other. This approach is usually N

applied in an unsupervised setting, in which

gene expression data are clustered based on thizlded a more accurate prediction of regulation
similarity in their gene expression profile. If, for by sigma factors. We therefore applied Eg. (6)
a given transcription factor, a large number of it () replaced by in all cases

regulated genes are already known, we can also ’ '
predict gene regulatory relations by comparingvotif search

the gene expression profiles of genes in the sam@ 4 dition to the gene expression data, we may
regulon to the gene expression profile of a newy ke yse of the sequence motif information of
gene. We can then infer gene regulatory relationg,e pnA polymerase-sigma factor DNA binding
in a supervised setting by making use of knowrjie The motifs of these binding sites for sigma
regulatory relations. . factors consists of two parts, one located around
Segalet al. (2003) describes the gene expres3g phage pairs and another around 10 base pairs
sion measurements of coregulated genes by @ystream of the transcription start site. The
normal distribution, assuming that measureyjisiance between the transcription start site and
ments in then different experiments or time e tranglation start site varies, but is generally
points are statistically independent: not more than about 300 base pairs. The gap
n between the -35 and the -10 binding motifs can
P (20, T2y Tjn) = sz(»s) (z;,). (4) differfordifferent genes in the same regulon, but
. ’ Pl ’ not by more than one or two base pairs or so.




added+/N pseudocounts, using a background

Sigma factor Binding motif probability of 0.3185 for A and T, and 0.1815
- for C and G.
o TAAA (13-15)GCCGATATAA
o GCATATTT (12-14)CATACAAT Combining gene expression and motif
o™ GCATA (17-18)CATACTA information
ot GAAGGAATT(14-15)GAAT
oK AC (17-19)CATATGAT Segalet al. (2003) proposed to add the log-
ot TGGCA (5) CTTGCAT likelihood scores based on the gene expression
oW TGAAACCTT (13-14)CGTATA

data and the motif information into a single log-
likelihood score:

LY =LE) (g, ..., yn) + LY (S).  (9)

expr motif

b

TGAAAC (16-17)CGTCTA

q

Table 1. The consensus sequence of the DNA binding motifs for the

RNA polymerase-sigma factor binding site for the eight sigma factors (s) i _li i
under consideration. The left motif is located around 35 base pairs i Here’ Lmotif (S) is the Iog likelihood score for

front of the transcription start site (except foF), while the right motif rl[he hlgh_e‘St'SCOFmQ sequence mdtifn the_300

is located at about -10 base pairs. base pair region upstream of the translation start
site. By combining the two information sources,
we expect to be able to gain a higher prediction
accuracy. For sigma factors suchaas having a
istinctive sequence motif, we expect the second
&rm to be dominant, while the gene expression
score may help us to distinguist?, o, which

Table 1 shows the consensus motifs for th
sigma factors under consideration here, as d
termined using Bioprospector (Leet al,, 2001)

from the DBTBS database of transcnonnthave similar sequence motifs. We will revisit this

binding sequences iBacillus subtilis(Makita .
. guation below, where we show that Eq. (9) does
et al, 2004). Whereas some sigma factors, SUCﬁot achieve the optimal balance between gene

as ot, can be distinguished easily from other : : :
sigma factors by virtue of its distinct Sequenceexpressmn data and sequence information, and

motif, other sigma factors such a® and o* may even essentially ignore the latter.

have similar motifs, which may not be easily

distinguished based on motif information anne.AS’SES_S'VIENT OF BIOLOGICAL VALIDITY _
The motif sequences can be described stati®ayesian network models have been predicted

. e - s revi ly from m r n ression
tically by a position specific score matrik,) gaet:%?égcchgromyc%isgeigvigZle(?otg)épt) gISSIO
(Durbin et al,, 1998) for sigma factog, which 2002a: Kimet al, 2003; Tamadat al., 200§-

lists the log-odds score of finding a nucleotider jegmanet al, 2000) andE. coli (Ong et al,

p at positionk in the binding sequence motif 2002) The validity of those network predictions

of sigma factors. The log-likelihood, relative 1o a5 assessed heuristically by showing an exam-

the background sequence probabilities, for a S&sje of a gene regulatory relation that was found

quenceS[k] is then correctly by the model. However, for a useful
prediction of gene regulatory relations, we need

(s) - (s) to know how many of the hundreds or thousands
Lipouis () = Z Mk,S[k}’ (8) of gene regulatory relations in such an inferred
k=1 network are correct. While a considerable effort

where K is the |ength of the motif. For the has been aimed at investigating the algorithmic
sequence motifs for RNA polymerase-sigma@spects of regulatory network inference, the
factor binding sites, we added the score of th&iological validity of the inferred networks has
-35 and the -10 motifs, and allowed the gap to0t yet been clearly demonstrated.
vary according to the currently known binding Here, we consider the sigma factor§, o,
sites. %, off, o¥, o%, oV, oX in Bacillus subtilis
The position specific score matrix was cal-A large number of genes have been shown
culated from the known binding motifs of the experimentally to be regulated by each of these
genes in the regulon of each sigma factor, asigma factors, as listed in the DBTBS database
listed in the DBTBS database. For the matrix(Makita et al, 2004). For each gene that is
calculation based oV known binding sites, we currently known to be regulated exclusively




by one Sigma factor (and possib]y by Other’TabIe 3. Number of correct sigma factor predictions for the dynamic
Qi F— odel, the Bayesian network model, and the coregulation-based model.

non Slgma transcrlptlon factors_), we CaICuIatqPor these predictions, only the time-course gene expression data were

a Bayesian network, a dynamic model, and Qseg.

coregulation-based model from the combined

gene expression data of ten time-course experi-

ments (Table 2). Sequence motif information is

ignored for now. oy ol Doramic Bayedan e mode
The gene expression levels were measured
twice at each time point. We calculated the P 16 2 12 12
average background noise level for the red (cy5) o° 51 17 3 21
and green (cy3) channel separately for each Uﬁ 25 L 0 !
data set. Gene expression measurements where %, o o : .
the fluorescence level is less than the average . 6 0 4 4
background level in either channel are removed x 4 0 2 1
from the data set, as they will be dominated by W 24 9 12 14
noise. Global normalization is then applied by
dividing the measured fluorescence levels of the Total 189 44 47 99
remaining genes by their sum in each channel.Percentage 23% 25% 52%
p-value 3.1x107° 26x107%  1.0x 1073

We note that in a previous prediction of the

operon structure oBacillus subtilisusing these

expression data, we found a 77.3% accuracy

level (De Hoonet al., 2004), which is a typical

accuracy level for operon prediction. Table 4.Disrupted gene in each experiment. The geteeg) sigF, sigW,
Table 3 shows the frequency that each Sigmandvegwere each disrupted in two experiments, as indicated here.

factor was estimated correctly by each network

inference method. The dynamic model yielded| apn cspB iolR rocR sigZ | yesS
44 correct predictions out of 189, an accuracy| abrs ctsR | yesO |  sacT sinR | yhjM
of 23%. While it is statistically significant | acoR | ydbG | lacR | senS soj yotL

ahrC | degU(2x) | levR sigB SplA yqfVv

(p = 2.6 x 107%) to predict the sigma factor | g deoR | lexA | sigh spo0A | yizE
correctly for 44 out of 189 genes, given the low | ansr | yjmH ImrA SigE spo0d | yufL
rate of accurate predictions the dynamic model arar |  ygkL IpA | sigF(2x) | spolliC | yugG
is unlikely to be a good predictor of currently | azB gerE IrpC sigG spolllD | yurK
unknown gene regulatory relations. Bayesian| ©P2 | ¢ | vanli| o sig o spovT ) yvk®
networks perform somewhat better with a| oy | iR | paa | wiot | wea | wee
prediction accuracy of 25%. This accuracy| “cir gntR | paiB | yhdm treR | yyaA
level could only be attained when the Bayesian| citt gutR | ygaG | sigV | veg(2x) | yybA
network model was applied to normalized log- | codY hpr phoP | sigW(2x) | xylR | yybE
ratios; a Bayesian network learned from gene oM~ | A PUR | S YBBHL | yydK
expression ratios directly yielded a much lower' “" i Py = y
prediction accuracy. The coregulation-based

prediction yields the highest prediction accuracy

at 52% in a leave-one-out analysis, in which for
the prediction of a geng the regulon statistics

1Y o) are recalculated after removing gepe

from its regulon.
To improve the prediction accuracy of the

increased for both methods upon adding the
gene disruptant data. The Bayesian network
model yielded an accuracy of 42%, while the

Bayesian network and the coreguIation-baset'?.oregul"J‘tion'base(.]l _model gglve the - correct
approach, we augmented our data set wit/$}gma factor prediction for 76% of the genes.

the gene expression measurements of 99 gerfdie fold-change analysis, based only on the
disruptant experiments, listed in Table 4. Bothexpression data from the gene disruptant exper-
methods were then applied to the gene expresments in which one of the eight sigma factors

sion data of the combined 174 microarrayswas disrupted, yielded a prediction accuracy of
As shown in Table 5, the prediction accuracy54%.




Experiment Measurement time points in minutes

Cold shock 0, 5, 10, 30, 60, 120

Competence 0, 60, 120, 180, 240, 300, 360

Glucose, glutamine added during sporulation 0, 60, 120, 180, 240, 300

Glucose limitation 0, 60, 125, 180, 240

Heat shock 0, 5, 10, 30, 60

Increased aminoacid availability 0, 30, 60, 120, 210, 300, 420, 540

Phosphate, glucose starvation 0, 60, 120, 180, 240, 300, 360, 420

Phosphate limitation 0, 55, 115, 175, 235, 295

Salt stress 0, 5, 10, 30, 60

Sporulation 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450, 480, 510, 540

Table 2. The time points at which expression measurements were made for the ten time-course experiBacitiusfsubtilisconsidered in this
paper.

Table 5. Number of correct sigma factor predictions using sequence motif information and gene expression information, using both the time-course
and the gene-disruptant expression data. (*) For the fold-change analysis, only the gene expression data of the gene disruptant experiments were used
in which one of the eight sigma factors was disrupted.

| | | Sequence| Expression data | Sequence and expression data |
| Sigmafactor| Total | Motif | Fold-change (*) Bayesian network  CoregulatipnSum of likelihood scores  Logistic regressidn
P 16 14 15 13 13 13 13
oF 51 31 35 17 39 39 43
oG 25 2 16 1 13 13 19
oH 40 21 33 5 35 35 35
oK 23 6 6 21 18 18 19
ot 6 6 6 2 4 4 6
X 4 1 3 1 1 2 2
oW 24 21 24 20 21 22 24
Total 189 138 102 80 144 146 161
Percentage 73% 54% 42% 76% 7% 85%
Combining gene expression and motif data and sequence motif information would lead
information, revisited to an improved prediction accuracy. However,

The prediction accuracy of the coregulation-as Table 5 shows, the combined score achieved

based model can be improved further by adding prediction accuracy of 77%, just barely larger
the likelihood scores of the gene expressiorthan the gene expression data by themselves.
data and the sequence information (Eq. (9)), a¥ is particularly surprising that the prediction
proposed by Segait al. (2003). From Table 5, accuracy does not improve fer”, whose se-
we see that the sequence information alone giveguence motif is easily distinguishable from the
a prediction accuracy of about 73%, just slightlysequence motifs of the other sigma factors.
lower than the combined gene expression data. The failure to effectively make use of sequence
This is in agreement with the previous resultmotif information is caused by the assumptions
that sequence information by itself can give aunderlying Eq. (9). Particularly, Eq. (4) assumes
rather good prediction of regulation by sigmathat the gene expression data from different
factors (Yadeet al,, 1997). We would therefore experiments are statistically independent. This
expect that the combination of gene expressiomay be a valid assumption if the perceived




randomness in the expression data is caused lan improved prediction accuracy of 85%. As
measurement errors only. However, in realityexpected, the logistic regression model is able to
the variability in the expression measurementsyecover the 100% accuracy rate for #hetran-

represented byz(s), includes both measurement scription factor. Fow®, ¢!, ando¥, for which
errors as well as biological knowledge that isthe gene expression data gave a more accurate
either unknown or ignored, such as additionalprediction than the sequence motif information,
transcription factors regulating a gene. In Eqthe logistic regression score maintains the pre-
(4), each additional microarray experiment isdiction accuracy of the gene expression data
then incorrectly assumed to contribute an equafor o*, and yields a prediction accuracy that
amount of new information as the previoussurpasses those of the motif information and
experiments. If the number of microarrays isthe gene expression data separatelyoforand
large, as in our case, the likelihood score of the,k A5 shown in Table 5, adding the likelihood

expression data will overwhelm the sequencgcores directly did not improve the prediction
motif score, which is then effectively ignored. accuracy fow®, o8, andoX

A common statistical technique to correct this

situation is logistic regression (Hastet al,
2001). In a logistic regression model, we treaCENOME-WIDE SEARCH FOR GENES

the gene expression score and the sequenég=GULATED BY SIGMA FACTORS
motif score as two random variables. The probWe calculated the score function based on
ability of belonging to the regulon of sigma logistic regression for all operons in tBacillus

factors is given by the logistic function: subtilis genome in order to find currently un-
known gene regulations by sigma factors. As for

(s) (s) 7(s) (5) 7(s) subtilishas not been determined experimentally,
exXp (wo + Wexpr Lexpr + Wisgrir Lot we use the computationally predicted operon
o N (o o o structure instead (De Hoaet al,, 2004), leadin

D¢ €XP (wé = wéxgrLéxgr + wr(no)tifLEno)tif to a total of 2214 (()perons. : )
The logistic regression score was calculated
Accordingly, the log-likelihood score is again for each sigma factor, both for operons that are
the sum of the gene expression score and thenown to belong to the corresponding regulon,
sequence motif score, but now each is precedeghd for operons known to be regulated by other

by a weight: sigma factors. This allows us to calculate fhe
value of the logistic regression score for newly
predicted gene regulations by a given sigma

Pr (gene belongs to regulofLey,:, Luotit) = the most part the operon structure Bécillus

J10) :w(()s) +w® L) 4 e

’ Y motit ot factor, under the null hypothesis that a gene is
B (s) (") (s not regulated by that sigma factor.
n [Z P {wo  Wexpr  Lexpn Table 6 shows the currently unknown pre-
s dicted gene regulations by sigma factors, for
+) o H which the predicted score was statistically sig-
motif motif e . e
nificant at a significance level of = 5 x 107

The weights can be estimated by maximizingTN€Se genes are characterized by both a high
this likelihood score, given the gene expressiorsimilarity in gene expression with other genes
score and sequence motif scores for the gen%e,gu_lated by the predicted sigma factor, and a
whose sigma factor is known. As the likelihood Pinding sequence motif that is highly consistent
score is a nonlinear function of the weights,W'th the consensus sequence. With the putative

maximizing this score is not straightforward. DNA binding sequences available, an experi-
However, we found that in practice a simplemental validation of these predictions should be

Newton-Raphson method starting from zerostraightforward. ,
weights converges quickly. Of particular interest is thgusZ-mrgAoperon

The weights were recalculated each time @nd theyvbX-yvbY-yviW-yvfV-yviU-yvbperon,
gene was removed for the leave-one-out analysighich are both predicted to be regulateddly
of this weighted score function. As shown in So far, only six operons are known experimen-
Table 5, the logistic regression score yieldedally to be regulated by*. These six operons




Approximate distance between

Operon Sigma factor Mortif transcription and translation start sites
ybdO oP TAAT — 15 bp —GCCGATA AAA 25
deoR-yxxB-yxeR oP TAAC — 13 bp —GCCGATATAA 85
yqiV-yqju oP TCAT — 13 bp —GCCGATAT GA 250
yusZ-mrgA ot TGGCC —5bp —CTTGCAG 130
yvbX-yvbY-yviW-yvfV-yvfU-yviT ok TGGCC — 5 bp —CTTCCGT 265
YPUA oW TGAAACCTG C — 14 bp —CGTCTA 80

Table 6.Newly predicted gene regulations by sigma factol@aillus subtilis These predictions are statistically significant to a levet ef 5x10~%.
In the motifs, bold characters are consistent with the consensus motif (compare to Table 1).

have identical binding motifs, except foocG, requirement.

whose binding sequencEGGTA — 5 bp — The superior performance of sigma factor
CTTGCAT deviates in one position from the prediction from coregulation is likely due to
consensus motif. Our newly predicted operorthe larger amount of expression data on which
yusZ-mrgAwith the binding sequence motif it depends. For example, the regulondf in
TGGCC — 5 bp —CTTGCAG deviates in our study contains 51 genes, whereas Bayesian
two places, while the binding motif ofjvbX- networks and dynamic models make use of the
yvbY-yviW-yviV-yvfU-yvfTGGCC — 5 bp —  expression data of the transcription factor only.
CTTCCGT, deviates in three positions. The Here, we were able to make use of coregulation
strong similarity in gene expression to othér in a supervised fashion because of the large
regulated genes, together with the motif simi-number of regulated genes known for each
larity, leads to a highly significant prediction. A sigma factor. When the aim is to find new
simple experimental verification of these pre-transcription factors, it will be necessary to
dictions is possible with the predicted bindingconsider the gene expression data of the parent

sites of thec“-RNA polymerase binding sites 9ene directly, either by a Bayesian network,
listed in Table 6. a dynamic model, or a fold-change analysis.

Currently, such models predict gene regulations
based on the parent-child relation only. Given
DISCUSSION . , our prediction g)ccuracies, it may be adv%sable to
To our knowledge, this is the first thorough jncjude similarity to coregulated genes explicitly
assessment of the biological validity of genejn these models.

regulatory relations inferred from genome-wide The prediction accuracies can be improved
data. We found that coregulation is a considfyrther by including DNA sequence motif infor-
erably better predictor of gene regulation bymation as an additional predictor in the model,
sigma factors irBacillus subtilisthan Bayesian as recently proposed by Seglal. (2003) and
networks, dynamic models, or a fold-changeTamadaet al. (2003). It is important to balance
analysis. A Bayesian network performs slightlythe gene expression and the sequence motif
better than a dynamic model, particularly be-information carefully to optimize the predictive
cause it allows the use of both time-course gengower of the joint score. As we have shown,
expression data and gene disruptant informasimply adding the log-likelihood scores for
tion. A fold-change analysis, though based on @ach predictor (Segadt al., 2003) effectively
much smaller amount of gene expression datdgnores sequence information if the number of
performs better than Bayesian networks and dymicroarrays is large. Instead, we estimate the
namic models. However, a fold-change analysiselative predictive power of gene expression
is possible only if a disruption experiment for and sequence motif information from the data
the transcription factor under consideration isthemselves using a logistic regression model,
available, while Bayesian networks, dynamicleading to an effective use of both information
models, and coregulation do not have thissources and an improved prediction accuracy.




We note that the Iogistic regression model typ- and nonparametric heteroscedastic regression for nonlinear
ically increased the relative importance of the modeling of genetic network. EEE Computer Society
sequence information by about a factor of ten Bioinformatics Conference (CSB200@p. 219-227.

: : likali Kim, S., Imoto, S. & Miyano, S. (2003). Dynamic Bayesian net-
compared to dlrectly addmg the Iog likelihood work and nonparametric regression for nonlinear modeling

Scores. . of gene networks from time series gene expression data. In
We then performed a genome'W|de search International Workshop on Computational Methods in Sys-

using the score function derived from the l0gistiC  tems Biology (CMSB2003), Springer Verlag Lecture Notes in
regression model to find additional genes that Computer Scienceolume 2602. pp. 104-113.

are regulated by each sigma factor. A very hightiang, S., Fuhrman, S. & Somogyi, R. (1998). REVEAL, a
score was found for several genes, for which generalreverse engineering algorithmforinferenceof_genetic
we can be confident that our predictions are network architectured?roc. Pac. Symp. on Biocomputirgy
correct. For genes with lower scores, it becomes, 1829

. ‘e . - Eiu, X., Brutlag, D. & Liu, J. (2001). Bioprospector: Discovering
progresswely more difficult to decide if the conserved dna motifs in upstream regulatory regions of co-

predlctlon IS correct or if the score is b,ased_ on expressed genes. [Rroc. Pac. Symp. on Biocomputing
chance. However, since our method identifies oume 6. pp. 127-38.

the location of the binding site of the sigma wmakita, Y., Nakao, M., Ogasawara, N. & Nakai, K. (2004).
factor-RNA polymerase complex as part of the DBTBS: Database of transcriptional regulation Bacillus
sigma factor prediction, a simple experimental subtilisand its contribution to comparative genomisisicleic

verification of the predictions is possible. Acids Researct82, D75-D77. htp://dbtbs.hgc.jp. _
Murphy, K. & Mian, S. (1999). Modelling gene expression

data using dynamic Bayesian networks. Technical report,
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