
BIOINFORMATICS APPLICATIONS NOTE Vol. 20 no. 9 2004, pages 1453–1454
DOI: 10.1093/bioinformatics/bth078

Open source clustering software

M.J.L. de Hoon1,∗, S. Imoto1, J. Nolan2 and S. Miyano1

1Human Genome Center, Institute of Medical Science, University of Tokyo,
4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan and 2University of California,
Santa Cruz Extension in Silicon Valley, 10420 Bubb Road, Cupertino, CA 95014, USA

Received on June 17, 2003; revised on July 27, 2003, accepted on July 31, 2003

Advance Access publication February 10, 2004

ABSTRACT
Summary: We have implemented k -means clustering,
hierarchical clustering and self-organizing maps in a single
multipurpose open-source library of C routines, callable from
other C and C++ programs. Using this library, we have created
an improved version of Michael Eisen’s well-known Cluster
program for Windows, Mac OS X and Linux/Unix. In addition,
we generated a Python and a Perl interface to the C Clustering
Library, thereby combining the flexibility of a scripting language
with the speed of C.
Availability: The C Clustering Library and the corresponding
Python C extension module Pycluster were released under
the Python License, while the Perl module Algorithm::Cluster
was released under the Artistic License. The GUI code
Cluster 3.0 for Windows, Macintosh and Linux/Unix, as
well as the corresponding command-line program, were
released under the same license as the original Cluster
code. The complete source code is available at http://bonsai.
ims.u-tokyo.ac.jp/~mdehoon/software/cluster. Alternatively,
Algorithm::Cluster can be downloaded from CPAN, while
Pycluster is also available as part of the Biopython distribution.
Contact: mdehoon@ims.u-tokyo.ac.jp

INTRODUCTION
Clustering techniques are widely used in gene expression data
analysis. By grouping genes together based on the similarity in
their gene expression profile, we may find functionally related
genes, and potentially the function of genes whose role is
presently unknown.

Several programs are currently available to analyze gene
expression data. The closed source Java program GeneCluster
(Tamayo et al., 1999; Golub et al., 1999) implements two-
dimensional (2D) self-organizing maps (SOMs) (Kohonen,
1990, 2001). The widely used Cluster/TreeView code (Eisen
et al., 1998), written in C++ for the Microsoft Windows plat-
form, focuses on hierarchical clustering methods, while 1D
SOMs, principal component analysis and k-means clustering
are also implemented. The source code for Cluster/TreeView,

∗To whom correspondence should be addressed.

minus the routines that are covered by the Numerical Recipes
license (Press et al., 1992), is available for the academic and
non-profit community.

Clustering routines suitable for usage with scripting
languages such as Python (http://www.python.org) or Perl
(http://www.perl.com) are often not available. Scripting
languages are heavily used in other fields of bioinformatics,
as they provide a flexible, platform-independent, mature and
easily extendible basis for data analysis.

THE C CLUSTERING LIBRARY
We have implemented hierarchical (pairwise single-,
average-, maximum- and centroid-linkage) clustering tech-
niques, SOMs on a 2D rectangular grid and the k-means
clustering algorithm as a library of C routines. The sim-
ilarity between gene expression data can be measured by
the Pearson correlation and the uncentered correlation, the
city-block distance, the Euclidean distance, the harmonically
summed Euclidean distance, Spearman’s rank correlation and
Kendall’s τ . All the clustering routines and distance measures
commonly used in expression data analysis are thus available
in a single open-source library.

The clustering library was written in ANSI-compliant C for
reasons of portability, interoperability with other languages
(in particular scripting languages), its speed compared with
Java and pure Python or Perl codes, and compiler availability.
An example C program that makes use of the C Clustering
Library is included with the source code.

Particular attention was paid to the implementation of the
k-means routine (Hastie et al., 2001; Tavazoie et al., 1999).
The algorithm starts from a random initial clustering, then
iterates by calculating the cluster centroids and reassign-
ing elements to the cluster with the closest centroid, and
is halted when no more reassignments are made. The aim
is to find the clustering solution that minimizes the within-
cluster sum of distances. As the initial clustering is random,
a different (and probably suboptimal) clustering solution may
be found each time the algorithm is executed. To find the
optimal k-means clustering solution, the algorithm should be
repeated many times with different initial random clusterings

Bioinformatics 20(9) © Oxford University Press 2004; all rights reserved. 1453

http://bonsai
http://www.python.org
http://www.perl.com


M.J.L.de Hoon et al.

(Hastie et al., 2001). The k-means routine as implemented
in the C Clustering Library automatically executes such
repetitions of the algorithm, where the number of repetitions is
specified by the user. The clustering solution with the smallest
within-cluster sum of distances is returned, as well as the num-
ber of runs in which that solution was found. If it was found
in only a few runs of the algorithm, better k-means clustering
solutions are likely to exist. In that case, the k-means routine
should be executed again with a larger number of repetitions.

We noticed that for some sets of initial cluster assignments,
after a few iterations the same clustering solution reappears
periodically, with periods of up to 10 iterations or so. As a res-
ult, the algorithm does not converge. The k-means algorithm
in the C Clustering Library therefore checks for periodically
reappearing clustering solutions, and halts the iteration if such
periodicity is detected.

CLUSTER 3.0 FOR WINDOWS, MACINTOSH
AND LINUX/UNIX
Cluster 3.0 is an improved version of the Cluster pro-
gram (Eisen et al., 1998) using the C Clustering Library,
thereby avoiding the need for the proprietary routines in
Numerical Recipes (Press et al., 1992). GUI versions for
Windows, Mac OS X and Linux/Unix platforms, as well as
a command-line version are available. Cluster 3.0 provides
several improvements over the original Cluster code, such
as a choice of distance measures for k-means clustering and
SOMs, automatic file format checking when loading a data
file, as well as improved accuracy and memory usage. In addi-
tion, Cluster 3.0 provides periodicity checks and automatic
repetitions of the k-means clustering algorithm, as described
above, which facilitates the search for the optimal clustering
solution.

The complete source code for Cluster 3.0, as well as an
installer for Windows, is available from our Website. On all
three platforms, Cluster 3.0 can be compiled with the GNU
C compiler (http://gcc.gnu.org); no commercial compiler is
required.

USING THE C CLUSTERING LIBRARY WITH
PYTHON OR PERL
Analysis tools for gene expression data are usually writ-
ten in the form of stand-alone GUI programs. In other
fields of bioinformatics, scripting languages such as Python
(http://www.python.org) or Perl (http://www.perl.com) are
heavily used, as exemplified by the Biopython (http://www.
biopython.org) and Bioperl (http://www.bioperl.org) projects.

Data analysis using scripting languages is performed by
issuing a series of commands to an interpreter. Commands
can be either issued individually by hand or stored in a script
file. Scripting languages and their extensions typically already

contain routines for file input and output, database access,
data filtering and processing and visualization. This greatly
reduces the code development time, as only the routines spe-
cific for bioinformatics need to be developed. Such routines
are typically stored in modules written in the scripting lan-
guage itself or in a compiled language such as C or Fortran.
By combining native scripting commands and calls to external
modules, the entire data analysis can be captured in a single
script. The Numerical Python project (Ascher et al., 2001,
http://sourceforge.net/projects/numpy/) makes Python partic-
ularly suitable for analyzing numerical data, such as those
produced in gene expression experiments.

To make the advantages of scripting languages available
for gene expression data analysis, we created the Python
C extension module Pycluster, as well as the Perl module
Algorithm::Cluster, such that the routines in the C Clustering
Library can be called directly from these scripting languages.
Pycluster is available at our Website as a source distri-
bution and as an installer for Windows; it has also been
integrated with Biopython. For Perl users, we created the
module Algorithm::Cluster. This module is available from
our Website, as well as from the Comprehensive Perl Archive
Network CPAN (http://www.cpan.org).

REFERENCES
Ascher,D., Dubois,P.F., Hinsen,K., Hugunin,J. and Oliphant,T.

(2001) Numerical Python. Lawrence Livermore National
Laboratory.

Eisen,M., Spellman,P., Brown,P. and Botstein,D. (1998) Cluster ana-
lysis and display of genome-wide expression patterns. Proc. Natl
Acad. Sci., USA, 95, 14863–14868.

Golub,T.R., Slonim,D.K., Tamayo,P., Huard,C., Gaasenbeek,M.,
Mesirov,J.P., Coller,H., Loh,M.L., Downing,J.R., Caligiuri,M.A.,
Bloomfield,C.D. and Lander,E.S. (1999) Molecular classification
of cancer: Class discovery and class prediction by gene expression
monitoring. Science, 286, 531–537.

Hastie,T., Tibshirani,R. and Friedman,J. (2001) The Elements of
Statistical Learning: Data Mining, Inference, and Prediction.
Springer-Verlag, New York.

Kohonen,T. (1990) The self-organizing map. Proc. IEEE, 78,
1464–1480.

Kohonen,T. (2001) Self-Organizing Maps, 3rd edn. Springer-Verlag,
Berlin.

Press,W.H., Teukolsky,S.A., Vetterline,W.T. and Flannery,B.P.
(1992) Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press, Cambridge, UK.

Tamayo,P., Slonim,D., Mesirov,J., Zhu,Q., Kitareewan,S.,
Dmitrovsky,E., Lander,E. and Golub,T. (1999) Interpreting pat-
terns of gene expression with self-organizing maps: Methods
and application to hematopoietic differentiation. Proc. Natl Acad.
Sci., USA, 96, 2907–2912.

Tavazoie,S., Hughes,J.D., Campbell,M.J., Cho,R.J. and
Church,G.M. (1999) Systematic determination of genetic
network architecture. Nat. Genet., 22, 281–285.

1454

http://gcc.gnu.org
http://www.python.org
http://www.perl.com
http://www
http://www.bioperl.org
http://sourceforge.net/projects/numpy/
http://www.cpan.org



