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Abstract

In gene network estimation from time series microarray
data, dynamic models such as differential equations and dy-
namic Bayesian networks assume that the network struc-
ture is stable through all time points, while the real network
might changes its structure depending on time, affection of
some shocks and so on. If the true network structure un-
derlying the data changes at certain points, the fitting of the
usual dynamic linear models fails to estimate the structure
of gene network and we cannot obtain efficient information
from data. To solve this problem, we propose a dynamic
linear model with Markov switching for estimating time-
dependent gene network structure from time series gene ex-
pression data. Using our proposed method, the network
structure between genes and its change points are automati-
cally estimated. We demonstrate the effectiveness of the pro-
posed method through the analysis of Saccharomyces cere-
visiae cell cycle time series data.

1. Introduction

For estimating gene networks from time series gene ex-
pression data measured by microarrays , a lot of attention
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has been focused on statistical methods, including Boolean
networks [1, 11], differential equations [3, 5], dynamic
Bayesian networks [6, 7, 8], state space models [2, 4] and
so on. While these methods have provided many success-
ful applications, a serious drawback for using these method
to estimate gene networks remains to be solved: a basic as-
sumption of these methods is that the network structure does
not change through all time points, while the real gene net-
work has time-dependent structure. In this paper, we give a
solution of this problem and establish a statistical method-
ology to estimate gene networks with time-dependent struc-
ture by using dynamic linear models with Markov switch-
ing.

Our model is based on the linear state space model, also
known as the dynamic linear model (DLM). In the DLM,
the high-dimensional observation vector is compressed into
the lower dimensional hidden state variable vector. For the
microarray analysis, the observation vector corresponds to
the gene expression value vector and the state variables can
be considered as a transcriptional module [9] that is a set
of co-regulated genes. Unlike Boolean networks, differ-
ential equations and dynamic Bayesian networks, we con-
sider the dependency between these state variables in the
DLM. Since microarrays contain much number of genes,
the learning of Boolean networks and other network mod-
els is often infeasible. On the other hand, in the DLM, the
network of the state variables gives a practical solution to
understand gene regulatory networks based on the possible



transcriptional modules. Furthermore, by considering the
canonical form of the DLM, it implicitly represents a net-
work between genes by the linear system with the first-order
Markov property.

Although, the DLM is advocated for analyzing high-
dimensional time series gene expression data, this model
also assume that the network structure is stable through the
all time points. If the network structure changes drastically
at certain points, the fitting of the DLM to the data should
fail and we cannot obtain efficient information from the es-
timated model. To solve this problem, we use the dynamic
linear models with Markov switching [12] (DLM-MS) that
is an extension of the DLM to capture the change points of
the data. In this approach, the dynamics of the system at a
certain point is generated by one of possible regimes evolv-
ing according to a Markov process. The parameters in the
DLM-MS are estimated by the Bayes approach based on
the Gibbs sampling. Thus, we obtain the posterior distribu-
tion of each parameter that can be used for determining the
network structure between genes. The number of switching
points of the network structure and the number of hidden
state variables are also automatically determined by the es-
timated prediction error.

The rest of this article is organized as follows: In Section
2, we present the time-dependent dynamic linear models
and elucidate how we estimate a networks between genes.
Section 3 describes the dynamic linear models with Markov
switching. Section 4 will discuss the Bayesian estimation
problem of DLM-MS, mainly, in terms of the computa-
tional aspect. Section 5 provides some analytic tools, in-
cluding the determination of the number of regime switch-
ing and the dimension of state vectors, and the estimation
of the transcriptional modules. In Section 6, the potential
usefulness of our approach will be demonstrated with the
application to Saccharomyces cerevisiae cell cycle time se-
ries data produced by Spellman et al. [13], where a part of
data is synthesized to have a switching structure. Finally,
the concluding remarks are given in Section 7.

2. Dynamic Linear Model

Let yt be a vector of d observed random variables which
contains expression values of d genes at time point t. The
DLM relates a collection of yt, t = 1, · · · , T , to the hidden
k-dimensional state vector xt in the following way:

yt = Atxt + wt. (1)

Here, the At is a d × k measurement matrix and the wt is
the Gaussian white noise as wt ∼ N(0, Rt). Usually the
dimension of state vector is taken to be much smaller than
that of data, k < d. In DLM, the time evolution of the state
variables are modeled by a first-order Markov process as

xt = Btxt−1 + vt, (2)

where Bt is k × k state transition matrix and the addi-
tive system noise follows form the Gaussian distribution
as vt ∼ N(0, Qt). Throughout this article, the noise
covariance matrices are assumed to be diagonal, Rt =
diag{r1t, · · · , rdt} and Qt = diag{q1t, · · · , qkt}, respec-
tively. Notice that the model parameters {At, Bt, Rt, Qt}
depend on the time index. This implies that the underlying
dynamics changes discontinuously at certain undetermined
points in time.

The process of the DLM starts with an initial Gaussian
state x0 that has mean µ0 and covariance matrix Σ0. In
DLM, the dynamics of Y (T ) = (y1, · · · , yT ) and X(T ) =
(x1, · · · , xT ) are governed by the joint probability distribu-
tion

p(X(T ), Y (T )) = p(x0)
T∏

t=1

p(xt|xt−1)p(yt|xt).

The all composition in this representation are the Gaussian
density φ in which p(x0) = φ(x0; µ0, Σ0), p(xt|xt−1) =
φ(xt; Btxt−1, Qt), and p(yt|xt) = φ(yt; Atxt, Rt).

The DLM, in its canonical form, implicitly assumes an
interesting casual relationship among the d variates (genes).
To see this, consider the generalized singular value decom-
position of At, namely, R

−1/2
t At = LtDtV

′
t where Lt

is a matrix of k orthogonal vectors of length d, the diago-
nal matrix Dt contains k singular values and V

′
t is a k × k

orthogonal matrix. Multiplying the both terms in observed
equation (1) by A+′

t = V tD
−1
t L

′
t from the lefthand-side,

one can obtain an expression as

A+′
t R

−1/2
t (yt − wt) = xt.

The canonical variate A+′
t R

−1/2
t (yt −wt) is a linear map-

ping of d-dimensional data onto the subspace Rk after re-
moving the effect of measurement noise. The matrix A+′

t

compresses the filtered data R
−1/2
t (yt−wt) into k modules

in the state vector. If (A+′
t )ij is positioned significantly far

from zero, the j-th gene captures a large effect on the i-th
module. In contrast, the influence of genes with the (A+′

t )ij

lying a region close to zero is removed.
Substituting the canonical variates A+′

t R
−1/2
t (yt −wt)

into the system model (2) leads to a causal relationship be-
tween the k modules defined by

A+′
t R

−1/2
t (yt−wt)=BtA

+′
t−1R

−1/2
t−1 (yt−1−wt−1)+vt.

This canonical form of DLM characterizes the interaction
between the previous modules to the current ones, that is,
module-module interaction, where the state transition ma-
trix Bt captures the intensity of interaction.

The DLM also retains the linear system for describing
the gene regulatory network as

R
−1/2
t (yt − wt) =



HtR
−1/2
t−1 (yt−1 − wt−1) + R

−1/2
t Atvt,

where the interaction matrices Ht, t = 1, · · · , T are param-
eterized by

Ht = R
−1/2
t AtBtA

+′
t−1.

The Ht governs the gene network from time point t−1 to t
in the following way: once the k modules in the compressed
data A+′

t−1R
−1/2
t−1 (yt−1 − wt−1) are given, the modules at

time t are constructed through the loading matrix Bt, and
then the updated k modules regulates the expression value
of d genes with the measurement matrix At.

To sum up, the time-dependent DLM describes the con-
secutive changes in module sets of genes, module-module
interactions and gene-gene interactions with the underly-
ing canonical form (see Figure 1). After learning At, Bt

and the projection matrix A+
t , we can identify the time-

dependent network structure by testing whether or not these
parameters lie in a region significantly far from zero. This
problem amounts to the classical testing method or the boot-
strap confidential intervals.

3. DLM with Markov Switching

The problem of modeling change in an evolving time se-
ries can be handled by incorporating the dynamics of some
underlying model change discontinuously at certain unde-
termined points in time. In view of real biological system,
the structural change might occur in smooth. To incorporate
a reasonable switching structure, we employ the DLM-MS
approach that assumes the yt is generated by one of the
G possible regimes evolving according to a Markov chain.
In this context, the model parameters {At, Bt, Rt, Qt}
are assumed to take one of the G possible configurations
{Āg, B̄g , R̄g, Q̄g}, g = 1, · · · , G, at each time point. For
notational convenience, we introduce the hidden vector of
G class labels (c(t))g = cg(t) to indicate the configurations
in the following way:

cg(t) =
{ 1 yt ∈ regime g

0 otherwise.

The DLM-MS, in its basic form, assumes that the discrete
variable c(t) evolves according to the first-order Markov
chain with the transition probability matrix M of order G×
G where the (h, g) element defines a probability of event
{yt ∈ regime g} ∪ {yt−1 ∈ regime h}, that is,

(M)hg = Pr(cg(t) = 1|ch(t − 1)).

Each row of M , denoted by mh, is restricted to be
||mh||2 = 1. Smoothness of change in regimes are con-
trolled by the entropy of mh for h = 1, · · · , G.

4. Bayesian Inference

For some gene expression data, each array contains some
genes with fluorescence intensity measurements that were
flagged by the experimenter and recorded as missing data
points. In such a case, yt is incomplete. To deal with the
missing problem, we define the partition of d observed vec-
tor yt = (yo′

t , ym′
t ) where yo

t and ym
t contain the observed

and missing components, respectively. Consequently, the
DLM-MS takes {C(T ), X(T ), Y

m
(T ), Y

o
(T )} as a complete

dataset having the joint distribution

pΘ(C(T ),X (T ),Y (T )) =p(c0)p(x0)
T∏

t=1

p(ct|ct−1)

p(xt|xt−1, ct)p(yt|xt, ct).

The parameters to be learned from the observed dataset are
collected into a set Θ = {Āg, B̄g, R̄g, Q̄g, M}G

g=1. The
p(x0) and p(c0) denote the initial distributions to derive
the dynamic system. Each composition in the above joint
distribution is obvious, so the details are omitted here.

Our attention turns to the Bayesian learning of DLM-MS
that requires the prior distribution of all model parameters
p(Θ) and the initial distribution of the hidden states p(x0)
and p(c0). In this study, we employ the natural conjugate
priors. Let āig and b̄ig be the i-th row of Āg and B̄g, re-
spectively. A family of the conjugate priors of DLM-MS
that we use are expressed as follows:

āig ∼ N+(0, λaI), ∀i, g,

b̄ig ∼ N(0, λbI), ∀i, g,

(R̄g)ii ∼ IG(γr0, δr0), ∀i, g,

(Q̄g)ii ∼ IG(γq0, δq0), ∀i, g,

mh ∼ Dir(u1, · · · , uG), ∀h.

where IG(γ, δ) stands for the inverse-gamma distribu-
tion with the shape γ and the scale parameter δ, and
Dir(u1, · · · , uG) denotes the Dirichlet distribution with the
prior sample size u1, · · · , uG. Note that the prior distribu-
tion of Āg is specified by the truncated Gaussian distribu-
tion N+(0, λaI) whose support are restricted to the positive
part aig ≥ 0. For DLM setting the underlying dynamical
system is invariant under the transformations as At → −At

and xt → −xt. To avoid the lack of identifiability, we use
the truncated prior distribution.

Once the prior distributions are given, the augmented pa-
rameters Θ, X(T ), C(T ), and Y m

(T ) are estimated through
the posterior distribution

p(Θ, X(T ), C(T ), Y
m
(T )|Y o

(T ))
∝ pΘ(C(T ), X(T ), Y (T )) p(Θ).

Within Bayesian framework, all inferences are made
based on the marginal posterior distribution, for instance,
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Figure 1. Schematic expression of time-dependent module-module networks represented by DLM-
MS. Change in regime occurs at time point t. The interactions of the two transcriptional modules
between previous and current time point in the first regime are different from those in the second
regime.

p(Θ|Y o
(T )), and the goal is to characterize the marginal dis-

tributions by using some quantities, e.g. the posterior mean
Θ̂ = E(Θ|Y o

(T )) and the maximum a posteriori estimator

Θ̂ = argmaxΘp(Θ|Y o
(T )) and so on. The direct evaluation

of these quantities is, however, difficult under the DLM-MS
setting. To overcome such intractability, we perform the
Gibbs sampling algorithm that approximately computes the
posterior quantities of interest by using simulated random
draws from the posterior distributions. The Gibbs sampling
is alternating conditional sampling which is defined in terms
of subvector of Θ, X(T ), C(T ) and Y m

(T ). Each iteration of
the sampling scheme cycles through the subvector of draw-
ing each subset conditional on the value of all the other.
With arbitrary starting values Θ0, X0

(T ), C0
(T ) and Y m0

(T ),
it proceeds by successive iteration of the following eight
steps:

1. Generate X(T ) conditional on Θ, C(T ) and Y (T ).

2. Generate Āg conditional on Θ−Āg
, X(T ), C(T ) and

Y (T ) for g = 1, · · · , G.

3. Generate R̄g conditional on Θ−R̄g
, X(T ), C(T ) and

Y (T ) for g = 1, · · · , G.

4. Generate B̄g conditional on Θ−B̄g
, X(T ), C(T ) and

Y (T ) for g = 1, · · · , G.

5. Generate Q̄g conditional on Θ−Q̄g
, X(T ), C(T ) and

Y (T )for g = 1, · · · , G.

6. Generate mh conditional on Θ−mh , X(T ), C(T ) and
Y (T ) for h = 1, · · · , G.

7. Generate C(T ) conditional on Θ, X(T ) and Y (T ).

8. Generate Y m
(T ) conditional on Θ, X(T ), C(T ) and

Y o
(T ).

Here, Θ−Z stands for all components of Θ, except for
Z, at their current values. The Markov structure of DLM-
MS and the assumption of conjugate priors makes it easy
to draw sample from the full-conditional distribution, for
example, the functional form of p(X(T )|Θ, C(T ), Y (T )) is
Gaussian where the mean and covariance matrix are suc-
cessively computed by the well-known Kalman filter and
smoother, and p(āig|Θ−Ā, X(T ), C(T ), Y (T )) is the pos-
itive part Gaussian distribution where its parameters are
determined by the conventional rule based on the natu-
ral conjugate prior. The above steps are detailed in Ap-
pendix. The method proceeds by alternatively sampling



from these full-conditional distributions. If the iteration
have proceeded long enough, the simulations is grossly rep-
resentative of the target distribution. To diminish the effect
of the starting point, we generally discard the first p sim-
ulated samples and focus attention on the rest n − p. The
set {Θj, X(T )j , C(T )j , Y

m
(T )j}n

j=p+1 is used to summarize
the posterior distribution and to compute quantiles, and the
other summaries of interest as needed.

5. Implementations

A basic issue arising in the DLM-MS approach is the
determination of the number of regimes in the switching
system, G, and the number of modules k. We address this
problem by selecting a particular combination {G∗, k∗} to
attain the best predictive ability.

To this end, we firstly construct B set of the bootstrap
samples in which B vectors of the quasi-missing observa-
tions, {ym

b }B
b=1, is generated by resampling of all elements

in Y o
(T ) with probability α. One intuitive approach is to

select a combination {G∗, k∗} to minimize the prediction
error

Err(G, k) =
1
B

B∑
b=1

1
Lb

||ym
b − ŷm

b (G, k)||2, (3)

where the Lb is the number of the quasi-missing observa-
tions contained in the b-th bootstrap set and the ŷm

b (G, k)
stands for the corresponding posterior mean computed by
the Monte Carlo samples.

In DLM-MS approach, the existing regimes are deduced
from the estimated posterior distribution of the class labels.
The Bayes rule explores the G regimes by assigning each
time point t to a particular regime as follows:

ĉg(t) =

{
1 if g = argmax

h∈{1,···,G}
∑n

j=p+1 ch(t)j ,

0 otherwise,

where {ch(t)j}n
j=p+1 is the simulated draws generated by

the Gibbs sampling.
Once the model parameters are estimated, the DLM-

MS approach offers a set of consecutive k modules
A+′

t R
−1/2
t (yt−wt) along with the time line t = 1, · · · , T ,

and also their estimated networks. Interpretation of the k
coordinates corresponding to the estimated modules is im-
portant for real data analysis. This task can be addressed by

investigating the direction of projection matrix A+′
t = Ā

+′

g

that projects yt onto Rk. In practice, it will be helpful to
list the top L genes to attain the highest positive score of
(Ā+

g )ij at Ω+
ig and the highest negative score at Ω−

ig for
j = 1, · · · , k and g = 1, · · · , G. These 2kG sets can be
useful either to visualize the calibrated networks and also to
elucidate a causal link from the estimated networks to some
biological resources.

6. Computational Experiments

We demonstrate our proposed method through the anal-
ysis of Saccharomyces cerevisiae cell cycle time series data
collected by Spellman et al. [13]. Although the cell cycle
dataset contains two short time series data and four medium
time series data, we use cdc15 time series data (24 time
points). Originally, 800 genes were identified as the cell
cycle-related genes by Spellman et al. [13]. From these 800
genes, 43 genes are also complied in the cell cycle pathway
in KEGG. Therefore, we use these 43 genes and estimate
the network of these genes in this analysis. While the 24
time course data were collected at unequal time intervals,
the sampling time points are assumed to be equally spaced
within our DLM framework. Without loss of generality, the
DLM approach can incorporate the problem of unequally-
spaced time points into the estimation procedure.

First, to select an optimal number of regimes G and the
number of modules, i.e. the dimension of state variable k,
we use diffuse prior distributions for all candidate models
as follows: λa, λb = 20, γr0 , γq0 = 10, δr0, δq0 = 10,
ug = 1 for g = 1, · · · , G, µ0 = 0, Σ0 = diag{10, · · · , 10}
and Pr(cg(0) = 1|I0) = 1/G for g = 1, · · · , G. In the
Gibbs sampling algorithm, the number of discarded draws
is fixed at p = 250000, and total n − p = 50000 samples
are used to compute the posterior quantities.

After fitting a variety of models ranging G = 1, · · · , 3
and k = 1, · · · , 6, the model of G = 1 and k = 5 was
judged to be optimal by using the 10-fold cross validation
criterion (3). Our proposed method provided no evidence
for the presence of the regime switching. However, this re-
sult is not desirable for demonstrating the performance of
our proposed method and its applicability.

We therefore decided to construct a quasi-cell cycle mi-
croarray data which are synthesized to capture a switching
structure. Data fabrication that we enforced are summarized
in both Figure 2 and below:

For t = 11, · · · , 17, the expression values of 43 genes
are interpolated in the following way:

1. Module 1

if i = 1, 2 yit = −0.4y1t−1 + 0.6y2t−1 + νt,

if 3 ≤ i ≤ 15 yit = −0.5y1t−1 + 0.6y2t−1

−0.3y31t−1 − 0.8y32t−1 + νt,

2. Module 2

if i = 16 yit = −0.4y16t−1 + νt

if 17 ≤ i ≤ 30 yit = 0.7y16t−1 − 0.6y2t−1 + νt



3. Module 3

if i = 31, 32 yit = 0.6y15t−1 + 0.7y31t−1

−0.4y32t−1 + νt

if 33 ≤ i ≤ 43 yit = 0.6y15t−1 + 0.5yit−1

+0.2y31t−1 + 0.4y32t−1 + νt

The order of genes, i.e. i = 1, · · · , 43, follows that of Figure
2.

In this synthesized regime, three quasi-modules are reg-
ulated by each other, as module 1 causes module 1 itself and
module 2, module 2 causes module 2 and 3, and module 3
regulates module 1 and 2, respectively. Primitive genes that
drive dynamics in this regime are comprised of y1t, y2t,
y15t, y16t, y31t and y32t. Figure 3 shows a schematic ex-
pression of data synthesis and the resulting expression pat-
terns. The member of each module is also listed at there.

Among a range of candidate models, cross validation
criterion attains the best score at the number of switching
points G = 2 and the number of hidden modules k = 3 that
is consistent with the existing data structure. Figure 4 sum-
marizes the time evolution of the estimated gene-gene inter-
action matrix Ht = R−1/2At+BtA

′
t−1 for t = 2, · · · , T

where the coefficients are computed by averaging the Monte
Carlo samples. Change in the regime from t = 11, · · · , 17 is
clearly detected while the estimated interaction in the other
regime are stable through the evolving times. Visualizing
time-dependent interaction matrices must be very helpful
for understanding the switching structure and finding the
time points of variation.

Figure 3 displays sets of module transcriptional genes
listed at Ω+

ig and Ω−
ig for i = 1, · · · , 3 and g = 1, · · · , 2 in

which shown here is a part of the selected genes in each set,
and the estimated module-module interactions are also pre-
sented. The existing two change points were correctly esti-
mated. In the synthesized regime, the calibrated 6 modules
are likely to reflect the quasi-three modules as all members
listed at a set belong to one quasi-module. The estimated
interactions is also consistent to the true data structure.

7. Discussion

We focused on a time-dependent DLM to deal with
structural change of biological system in gene expression.
As was elucidated in this paper, the DLM, in its canon-
ical form, implicitly represents gene-gene interaction via
module-module interaction. The time-dependent DLM as-
sumes that these interactions change over time. This as-
sumption is natural in terms of real gene expression process,
but the occurrence of structural change must be smooth. To
incorporate smoothness, we proposed use of the DLM-MS

that represents change in regime evolving according to the
first-order Markov process. We established some analytic
tools associated with DLM-MS; the Bayesian parameter es-
timation based on the Gibbs sampling algorithm; the cross
validation approach for the determination of the number
of switching time points and the number of module tran-
scriptionals; visualization technique for the evolving gene-
gene interactions and the module-module interaction. We
demonstrated its potential usefulness with the application to
Saccharomyces cerevisiae cell cycle time course data where
a part of data is synthesized as to have a switching structure
in the gene network.

The gene regulation system stated by the our proposed
model is an autonomous process that does not depend on
any external variables e.g. proyteins, metabolites and so on.
This fundamental assumption might be quite questionable.
Within our framework, a dependence of the gene regulation
on the external system can be included by incorporating the
utilizable driving inputs into the observational equation or
the system model.

The Bayesian parameter estimation gives a scope to the
overfitting problem occurred due to small sample size and
a way of incorporating the biological knowledge to the pa-
rameter estimation procedure. However, in this study, am-
biguity in the determination of hyperparameters of the prior
distributions is remained. In practice, we have to further ex-
plore the robustness of some estimates for any priors in the
class. In a case where no prior knowledges are available,
the hierarchical Bayes method must be useful to avoid such
ambiguity or to model relatively complicated situations. Al-
ternatively, a family of noninformative priors, e.g. Jeffery’s
prior or uniform prior, is also incorporated into our method
without loss of generality.

Although some tasks remain to be solved, we believe that
our proposed method will provide the successful applica-
tions for gene network estimation problem.

Appendix: Gibbs Sampling for DLM-MS

The following steps explain details of the Gibbs sam-
pling algorithm, given arbitrary starting values Θ0, X0

(T )

and C0
(T ). Hereafter, we will use the following notations:

xt|s = E(xt|Is)

and

F t|s = E
[
(x − xt|s)(x − xt|s)

′∣∣∣Is

]
,

where the set Is contains all information up to time point s.

1. Generate X(T ) conditional on Θ, C(T ) and Y (T ) ac-
cording to

p(X(T )|Θ, C(T ), Y (T )) ∝ p(xT |Θ, C(T ), Y (T ))
T−1∏
t=1

p(xt|xt+1, Θ, C(T ), Y (T )).
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S. cerevisiae cell cycle time series data
   43 genes × 24 time points 

Synthetic data with 
Regime Switching (cdc15 140 - cdc15 210)

quasi-switching regime

Module A : FAR1 CLN3 SWI4 CLN1 CLN2 CLB5 CLB6 SIC1 APC1 CDC20 CDC6 ORC1 MCM2 MCM3 CDC54
CDC46MCM6 CDC47CDC45 CLB4 MEC3 PDS1 RAD53 CDC5 CLB1 CLB2 SWE1 GIN4 HSL7 HSL1
SWI5 BUB1 SMC1 SMC3 MCD1 SCC3 DBF2 DBF20 MOB1 TEM1 BUB2 PCL1 PCL2

Module B : 
Module C : 

Module A

Module C

Module B

Figure 2. Fabrication of synthetic data: Original dataset contains the 43 gene expression values
Saccharomyces cerevisiae cell cycle measured at 24 time points. In the regime from t = 11 to 17, the
quasi-expression values are interpolated by following a time series model. The synthetic gene
expression organizes the three transcriptional modules.

Note that p(xT |Θ, C(T ), Y (T )) takes in the form of
Gaussian which is equivalent to the filtering distri-
bution corresponding to the conventional linear state
space model. Hence the computation of the mean and
the covariance matrix is accomplished via the Kalman
filter.

(a) With initial conditions x0|0 = µ0 and F 0|0 =
Σ0, run the Kalman filter algorithm for t =
1, · · · , T :

i. (Prediction)

xt|t−1 = Btxt−1|t−1,

F t|t−1 = BtF t−1|t−1B
′
t + Qt,

ii. (Filtering)

xt|t = xt|t−1 + Kt(yt − Atxt|t−1),
F t|t = (I − KtAt)F t|t−1,

Kt = R−1
t At(A

′
tR

−1
t At+F −1

t|t−1)
−1.

(b) The last iteration of the Kalman filter provide us
with xT |T and F T |T , and xT can be generated

from

xT ∼ N(xT |T , F T |T ).

(c) For t = T − 1, T − 2, · · · , 1, generate repeatedly
xt according to

xt ∼ N(mt, P t)

where the mean and the covariance matrix are
computed by the updating equation

mt = xt|t + Gt+1(xt+1 − Bt+1xt|t),
P t = (I − Gt+1Bt+1)F t|t,

with

Gt+1=F t|tB
′
t+1(Bt+1F t|tB

′
t+1+Qt+1)

−1.

2. For g = 1, · · · , G, generate Ā
′

g = (ā1g · · · ādg) con-
ditional on Θ−Āg

, X(T ), C(T ) and Y (T ). in the fol-
lowing way:

āig ∼ N(ηig, Ψig),



time t=11 to 17time t=1 to 10 time t=18

} }
Regime 1 Regime 2

change point

Regime 1

change point

}

Figure 3. The calibrated module genes listed at Ω+
ig and Ω−

ig for i = 1, · · · , 3 and g = 1, · · · , 2 and the
module-module interactions. Switching time points are estimated as t = 11 and t = 18. Gene names
prefixed with + and − were listed at Ω+

ig and Ω−
ig, respectively. Each score represents the intensity of

interaction between two modules.

where the mean and the covariance matrix are com-
puted by

ηig =

(
λa

r̄ig
I + X

′
gXg

)−1

(X
′
gyig)

Ψig = (λaI + r̄−1
ig X

′
gXg)−1.

for i = 1, · · · , d. Here the vector yig contains the i-
th gene expression value (yt)i belonging to the g-th
regime, that is, having the current class label cg(t) =
1. Each row of the design matrix Xg is the current
state vector xt having cg(t) = 1, where the number of
rows is equal to {num. of time points ∈ regime g} =∑T

t=1 cg(t).

3. For g = 1, · · · , G, generate R̄g conditional on Θ−R̄g
,

X(T ), C(T ) and Y (T ) according to

rig ∼ IG(γr1 , δr1)

where

γr1 = γr0 +
T∑

t=1

cg(t),

δr1 = δr0 + ||yig − Xgāig||2,

for i = 1, · · · , d.

4. For g = 1, · · · , G, generate B̄g conditional on Θ−B̄g
,

X(T ), C(T ) and Y (T ) in the following way:

b̄ig ∼ N(ξig, Φig),

where the mean and the covariance matrix are com-
puted by

ξig =

(
λb

q̄ig
I + S

′
gSg

)−1

(S
′
gxig)

Φig = (λbI + q̄−1
ig S

′
gSg)−1.

Here the response vector xig contains the i-th element
of xt having the current label cg(t) = 1, and thus the
length

∑T
t=1 cg(t). Each row of the design matrix Sg

consists of the the corresponding inputs vector xt−1 in
the system model.



5. Generate Q̄g conditional on Θ−Q̄g
, X(T ), C(T ) and

Y (T ) according to

q̄ik ∼ IG(γq1, δq1)

where

γq1 = γq0 +
T∑

t=1

cg(t),

δq1 = δq0 + ||xig − Sg b̄ig||2,
for i = 1, · · · , k.

6. Generate mh conditional on Θ−m, X(T ), C(T ) and
Y (T ) as

mh ∼ Dir(nh1 + u1, nh2 + u2, · · · , nhG + uG),

where nhg stands for the number of samples having
cg(t) = 1 and ch(t − 1) = 1.

7. Generate C(T ) conditional on Θ, X(T ) and Y (T ) ac-
cording to

p(C(T )|Θ, X(T ), Y (T )) ∝ p(ct+1|ct, Θ)
p(ct|Θ, X(t), Y (t)).

To this end, the following steps can be employed:

Starting from an initial distribution p(c0|I0) = 1/G,
run the filtering algorithm to calculate p(ct|It), t =
1, · · · , T where It = {Θ, X(t), Y (t)} as,

(a) Given p(ct−1|It−1) at the beginning of time t,
the Pr(cg(t) = 1, ch(t− 1) = 1|It−1) are calcu-
lated by

Pr( cg(t) = 1, ch(t − 1) = 1|It−1)
=Pr(ck(t)=1|ch(t−1)=1)Pr(ch(t−1)|It−1).

(b) Once It = It−1∪{yt, xt} is observed at the end
of time t, we can update the filtered probability as

Pr(cg(t)= 1 |It)

=
G∑

h=1

Pr(cg(t)=1, ch(t−1)=1|It),

where

Pr (cg(t) = 1, ch(t − 1) = 1|It)
∝ p(yt|xt, cg(t) = 1)p(xt|xt−1, cg(t) = 1)

Pr(cg(t)=1, ch(t − 1)=1|It−1).

8. Generate Y m
(T ) conditional on Θ, X(T ), C(T ) and

Y o
(T ) as

ym
t ∼ N(A(m)

t xt, R
(m)
t ).

where A
(m)
t and R

(m)
t are, respectively, the parti-

tioned measurement matrix and the covariance matrix
of At and Rt corresponding to the missing parts.
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Figure 4. The estimated time-dependent interaction matrices, Ht, t = 2, · · · , 24: Each colored pixel
expresses an intensity of gene-gene interaction from t − 1 (column) to t (row).


