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Abstract

We developed an extensive yeast gene expression library consisting of full-genome cDNA array data for
over 500 yeast strains, each with a single-gene disruption. Using this data, combined with dose and time
course expression experiments with the oral antifungal agent griseofulvin, whose exact molecular targets
were previously unknown, we used Boolean and Bayesian network discovery techniques to determine the
gene expression regulatory cascades affected directly by this drug. Using this method we identified CIK1
as an important affected target gene related to the functional phenotype induced by griseofulvin. Cellular
functional analysis of griseofulvin showed similar tubulin-specific morphological effects on mitotic spindle
formation to those of the drug, in agreement with the known function of CIK1p. Further, using the
nonparametric, nonlinear Bayesian gene networks we were able to identify alternative ligand-dependant
transcription factors and G protein homologues upstream of CIK1 that regulate CIK1 expression and might
therefore serve as alternative molecular targets to induce the same molecular response as griseofulvin.
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Rational drug design methodologies have previously
been concentrated on optimizing small molecules against
a predetermined molecular target. The randomized lead
to target to phenotype screening for target selection that
is currently the prevailing paradigm in drug discovery
has failed to offer a more efficient and accurate tar-
get selection process even with the current availability
of genomic information and high throughput screening
processes.1–3 The availability of genomic sequences, full
genome microarrays and recent advances in gene network
inference computational techniques allows for a new ra-
tional paradigm for drug target selection that takes into
account global networked regulatory interactions among
molecules in the genome. Disruptant-based gene expres-
sion data4,5 can be used to produce gene regulatory net-
work models by using various computational inference
techniques.6–13 Here we show how to employ the gene

Communicated by Satoshi Tabata
∗ To whom correspondence should be addressed. Tel. +81-92-

642-3042, Fax. +81-92-642-3043, E-mail: ktashiro@grt.kyushu-
u.ac.jp

regulatory network information developed with network
inference techniques10,11,13 for quickly determining the
molecular networks and gene targets affected by a given
compound. The same information allows for the iden-
tification of alternative tractable molecular targets up-
stream or downstream of a drug-affected molecule in the
gene expression regulatory cascade.

We have developed a gene regulatory network-driven
iterative drug target discovery process. In this method-
ology, first large numbers of gene expression experiments
are performed on single-gene disruptant cell lines (See
Aburatani et al. in this issue). This information is used to
create computationally inferred maps of hierarchical gene
expression control. The hierarchical regulatory informa-
tion is used as a basis for evaluation of drug response
experiments and for generation of hypotheses of molec-
ular action mechanisms. Information from the literature
and further biological experimentation on the elucidated
regulatory sub-networks is used to understand and val-
idate results before selecting a candidate molecule for
drug targeting.
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Figure 1. We performed hierarchical clustering analysis of 118 gene disruptant full genome microarray experiments and microarray
data for 20 dose and time course griseofulvin exposure experiments. (Griseofulvin microarray expression values are available on the
web at http://www.grt.kyushu-u.ac.jp/data/drug.htm.)

Most effective drugs in clinical use including aspirin
and other popular medications have not been rationally
designed to interact with a specific molecular target.
Thus, even when the desired clinical effect or phenotype
is achieved with these drugs, the exact underlying molec-
ular mechanisms of action, and thus the mechanisms
of the drug’s side effects, often remain unknown. Full
genome gene expression experiments have been shown to
be useful in determining alternative genes and pathways
affected by a drug,14–16 but determination of the primary
molecular targets for many drugs which affect hundreds
of genes is impractical using standard gene expression
analysis methods such as clustering without a priori in-
formation on potential targets for the drug. Here we
demonstrate the use of hierarchical gene expression regu-
lation networks from full genome expression libraries and
gene network modeling techniques together with drug re-
sponse expression experiments to determine the previ-
ously unknown underlying molecular affects of the pop-
ular generic antifungal agent, griseofulvin.

Griseofulvin is a widely prescribed oral antifungal
agent that is indicated primarily for severe fungal infec-
tions of the hair and nails. While griseofulvin’s molecu-
lar action is unknown, it is known that the drug disrupts
mitotic spindle structure in fungi, leading to metaphase
arrest. The yeast strain used in this study is BY4741. We
incubated yeast cultures in concentrations of 10, 50, and
100 mg in 10 ml of DMF and took aliquots of the culture
at 5 time points (0, 15, 30, 45, and 60 minutes) after the
addition of griseofulvin. To monitor the gene expression
profile, cells were pre-grown at 30◦C in YPD medium
(2% polypeptone, 1% yeast extract, and 2% glucose) to
mid-exponential phase. We then extracted the total RNA
from these experiments, labeled the RNA with cy5, hy-
bridized them with cy3-labeled RNA from non-treated

cells and applied them to full genome cDNA microarrays.
(For detailed experimental procedures see Aburatani et
al. in this issue.)

One hundred and eighty-three genes were affected over
a 2 sigma threshold among 552 genes which differed
in expression between drug-treated and normal yeast.
Standard hierarchical clustering methodologies were ap-
plied to the combined expression libraries from drug re-
sponse and gene disruption experiments, and the resul-
tant genes were grouped into two major clusters: genes
affected by griseofulvin and genes affected by disruption
(Fig. 1). Within the griseofulvin clusters, genes were fur-
ther grouped by dosage or time course. However, cluster-
ing analysis did not reveal any gene disruption expression
pattern that significantly resembles any of the expression
patterns created under the influence of griseofulvin.

The use of gene regulatory network models, combined
with the drug perturbation data allows for a hierarchical
gene regulatory view of the drug’s interaction with genes
in the transcriptome. To generate this gene network drug
perturbation data, we first created a full genome expres-
sion library consisting of 542 single-gene disruption mu-
tants. The 120 array matrices selected from the library
were logically joined with the array matrices generated
from the griseofulvin experiments. A Boolean methodol-
ogy designed for gene network elucidation11,12 was then
applied to the joint expression matrices for each time
course. The Boolean algorithm was selected for its suit-
ability for handling joint matrices, its ability to handle
looped regulatory processes and the ease of creation of
hierarchical directed graphs with several orders of reg-
ulatory separation. We produced joint Boolean regula-
tory sub-networks for each dosage and time point exper-
iment (Fig. 2a). From this data, we were able to iden-
tify the first order drug affects as opposed to secondary
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Figure 2. Hierarchical map of drug-affected genes from combined Boolean analysis of drug response and disruptant expression data. a.
Boolean analysis of gene expression effects due to griseofulvin exposure was used to produce hierarchical graphs of gene regulatory
cascades for each drug exposure experiment. For determining drug-affected genes from disruption and drug dose expression data, the
Boolean network modeling13 regards the drug as a “virtual gene” and was used for detecting the parent-child hierarchical structure
of genes including the virtual gene. Shown here is the resulting gene network cascade at 100 mg and 30 min. This analysis allows
for separation of direct and indirect regulatory events. For example, genes under LEU3 are under direct expression regulation by
LEU3 and in turn, genes under DAL82 (which is affected by LEU3) are affected directly by DAL82 and indirectly by LEU3. b.
A superimposed graph of Boolean networks generated for 5 separate time and dosage griseofulvin exposure experiments. CIK1
expression is significantly affected under exposure to griseofulvin at each dosage and time point. c. Flourescent microscopy of tubulin
in unaffected wild type (A, B), griseofulvin-treated (C, D) and CIK1 disruptant yeast cells (E, F). Left photos (red) are of tubulin
and right (blue) are of the nuclei of the cells. Cells exposed with or without 100 µg/ml griseofulvin for 1.5 hr were fixed with 3.7%
formaldehyde and 0.25% glutaraldehyde for 30 min. Microtubles were visualized by a procedure described previously (Pringle, J.
R., A. E. M. Adams, D. G. Drubin, and B. K. Haarer [1991] Immunofluorescence methods for yeast. Methods in Enzymology, 194,
565–602) using the rat anititubulin antibody (YOL 1/34, Oxford Biotechnology Ltd.) and TRIC-conjugated rabbit anti-rat IgG
(Sigma). The cells were then mixed with 0.05 g/ml DAPI and p-phenylenediamine before viewing. Stained cells were examined with
an inverted microscope (Olympus Co.) and the images were captured with a CCD camera.
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Figure 2. Continued.
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Table 1. Expression fold changes for 6 directly affected genes as determined by gene network analysis for 5 griseofulvin microarray
experiments at various time points and concentrations.

10mg_15min 25mg_15min 100mg_15min 10mg_30min 100mg_30min

YFL054C +10.58 +9.08 +7.74 +5.62 +3.66

DDR48 +10.93 +6.74 +6.36 +6.49 +5.26

CIK1 +11.46 +11.17 +9.32 +7.17 +4.57

LEU3 +5.10 +4.73 +6.27 +3.61 +3.88

FUS1 +15.42 +10.22 +7.14 +6.94 +4.58

GZF3 +9.33 +10.79 +8.17 +5.11 +4.57

Gene Name
Ratio of each experimental condition (YEXP)

or higher level cascade effects initiated by those initial
perturbation-induced regulatory events.

By evaluating the Boolean data from each time and
dose differential experiment, we were able to identify
6 genes that were consistently and significantly affected
as first degree effects in the network hierarchy at each
time and drug concentration (Fig. 2b). Of these genes,
CIK1 exhibited the strongest change at 4 of 5 time points
and concentrations and the second strongest effect at
the 4th data point (Table 1). CIK1 codes for a pro-
tein described in the yeast proteome database (YPD)
as a coiled-coil protein of the spindle pole body in-
volved in spindle formation and the congression (nu-
clear migration) step of karyogamy.17 Since the action
of griseofulvin is known to affect mitotic spindle for-
mation, we performed a functional analysis of griseoful-
vin activity through examination of tubulin formation of
yeast strains with a disrupted CIK1 gene to determine if
the mitotic spindle formation irregularities observed in-
volved tubulin-related genes specifically. While neither
the treatment with griseofulvin at normal physiological
dosage nor the disruption of CIK1 are lethal, both cul-
tures show similar significant dysplasia of tubulin and
growth characteristics compared to unaffected normal
strains and normal nuclear staining showed that these
changes were not attributable in either case to general
affects on the nucleus through apoptotic or other unspe-
cific nuclear dysplasia events (Fig. 2c).18,19

It is difficult to determine definitively through expres-
sion data alone whether griseofulvin actually binds to
CIK1p or some alternative molecule that in turn effects
CIK1 expression. In fact, in the case of griseofulvin ex-
posure, CIK1 is significantly upregulated in expression,
not suppressed as might be expected as a significant drug
affect along a critical pathway regulated by a drug. It is
biologically feasible that the significantly increased ex-
pression level of CIK1 may be caused by the affect of
griseofulvin on other genes involved in tubulin formation
or localization and that this marked upregulation of a
tubulin-related gene is due to a cellular survival response
to a forced inhibition of other critical tubulin formation

events or components. However, it is apparent from the
multiple expression experiments and the similar morpho-
logical and physiologic effects that are seen in CIK- yeast
strains and griseofulvin-affected yeast cells that the cel-
lular phenotype caused by griseofulvin is somehow re-
lated to genes in the tubulin expression regulatory cas-
cade in which CIK1 is involved. Further experimentation
on tubulin-related expression regulation pathways is nec-
essary to test this hypothesis.

It is further unclear whether CIK1p itself would repre-
sent an ideal tractable molecular target. However, using
the Bayesian models of network regulatory data avail-
able to us from our knockout expression library, we are
able to search for other molecules involved in the same
regulatory pathway that could serve as alternative drug
targets. Using the algorithm described in Imoto et al.,
we created a Bayesian network model to describe the ex-
pression control relationships elucidated from the disrup-
tant expression data.10,11 In our model, KAR3 resides up-
stream of CIK1 in a regulatory path. Both proteins are
known to be involved in mitotic spindle formation. Fur-
thermore, it has been reported that CIK1p and KAR3p
participate in a protein-protein interaction and that the
deletion of either of these genes causes spindle formation
problems and results in cell growth arrest.20 Further, in
these Bayesian regulatory networks there were ligand-
dependent transcription factors and GPCR homologues
upstream of CIK1 (Fig. 3a, 3b) that regulate the same
gene cascades. These classes of proteins are known to be
useful drug targets and together represent a majority of
the targets for medications presently on the market.

The methodologies described here clearly demonstrate
the utility of a combined expression array and computa-
tional approach using gene network techniques to rapidly
ascertain and validate the molecular mechanisms of ac-
tion of a given compound on a cell. The use of such tech-
niques will help to rationalize the target selection process
of pharmaceutical development in the post-genomic era
and could contribute to greater efficiency of discovery and
to a reduction in development risk for the pharmaceuti-
cal industry. The same techniques can further be applied
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Figure 3. Potentially tractable drug target molecules upstream of CIK1 in Bayesian gene regulatory subnetworks. a. Gene regulatory
subnetworks upstream of CIK1 containing ligand dependent transcription factors. KAR3 and GZF3 both have been reported to be
involved in a similar cellular function to CIK1 related to tubulin formation and structure. b. Gene networks upstream of CIK1 with
G protein homologue molecules.

to other biological discovery and agrochemical targeting.
Our laboratories are currently replicating this discovery
model in human and other biological systems.
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