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We propose a new method for constructing genetic network from gene expression
data by using Bayesian networks. We use nonparametric regression for capturing
nonlinear relationships between genes and derive a new criterion for choosing the
network in general situations. In a theoretical sense, our proposed theory and
methodology include previous methods based on Bayes approach. We applied the
proposed method to the S. cerevisiae cell cycle data and showed the effectiveness
of our method by comparing with previous methods.

1 Introduction

The microarray technology provides us enormous amount of valuable gene ex-
pression data. The analysis of the relationship among genes has drawn remark-
able attention in the field of molecular biology and Bioinformatics. However,
due to the cause of dimensionality and complexity of the data, it will be no easy
task to find structures, which are buried in noise. To extract the effective infor-
mation from microarray gene expression data, thus, theory and methodology
are expected to be developed from a statistical point of view. Our purpose is to
establish a new method for extracting the relationships among genes clearer.

Constructing genetic networks3,4,5,12,13,19 is one of the hot topics in the
analysis of the microarray gene expression data. Bayesian network is an attrac-
tive method for constructing genetic networks from a graph-theoretic approach.
Friedman and Goldszmidt12 proposed an interesting method for constructing
genetic links by using Bayesian networks. They discretized the expression value
and considered to fit the models based on multinomial distributions. However,
a problem still remains to be solved in choosing the threshold value for dis-
cretizing not only by the experiments. The threshold value assuredly gives
essential changes of the results and unsuitable threshold value leads to wrong
results. On the other hand, recently, Friedman et al.13 pointed out that dis-
cretizing is probably loosing the information. To use the expression data as
continuous values, thus, they considered the use of Gaussian models based on
linear regression. However this model can only detect linear dependencies and
we cannot obtain sufficient results.

In this paper we propose a new method for constructing genetic networks



by using Bayesian networks. To capture not only linear dependencies but also
nonlinear structures between genes, we use nonparametric regression models
with Gaussian noise11,15,22,23. Nonparametric regression has been developed in
order to explore the complex nonlinear form of the expected responses without
the knowledge about the functional relationship in advance. Due to the new
structure of the Bayesian networks, a suitable criterion is needed for evaluating
models. We derive a new criterion from Bayesian statistics. By using proposed
method, we will overcome the defects of previous methods and attain more
effective information. In addition, our method includes the previous method12

as a special case. The efficiency of the proposed method is shown by the Monte
Carlo simulation method. We also demonstrate our proposed method through
the analysis of the S. cerevisiae cell cycle data21.

2 Bayesian Network and Nonparametric Regression

Let X = (X1, X2, ..., Xp)T be a p-dimensional random vector and let G be
a directed acyclic graph. Under the Bayesian network framework, we look
upon a gene as a random variable and decompose the joint probability into the
product of conditional probabilities, that is

P (X1, X2, ..., Xp) = P (X1|P 1)P (X2|P 2) × · · · × P (Xp|P p), (1)

where P j = (P (j)
1 , P

(j)
2 , ..., P

(j)
qj )T is a qj-dimensional vector of parent variables

of Xj in the graph G.
Suppose that we have n observations x1, ..., xn of the random vector X

and the observations of P j are denoted by p1j , ..., pnj , where pij is a qj-
dimensional vector with k-th element p

(j)
ik , for k = 1, ..., qj. For example,

let Xn be an n × p matrix, where Xn = (x1, ..., xn)T = (x(1), ..., x(p)) =
(xij)i=1,...,n;j=1,...,p, xi = (xi1, ..., xip)T , x(j) = (x1j , ..., xnj)T and xT

i is the
transpose of the vector xi. If X1 has a parent vector P 1 = (X2 , X3)T , we
obtain p11 = (x12, x13)T , ..., pn1 = (xn2, xn3)T .

It is immediately found that the equation holds when we replace the prob-
ability measure P in (1) by densities

f(xi1, xi2, ..., xip) = f1(xi1|pi1)f2(xi2|pi2) × · · · × fp(xip|pip).

Then all we need to do is to consider how to construct the conditional densities
fj(xij |pij) (j = 1, ..., p).

In this paper, we use nonparametric regression models for capturing the
relationship between xij and pij = (p(j)

i1 , ..., p
(j)
iqj

)T in the form

xij = m1(p
(j)
i1 ) + m2(p

(j)
i2 ) + · · ·+ mqj (p(j)

iqj
) + εij , i = 1, ..., n; j = 1, ..., p,



where mk (k = 1, ..., qj) are smooth functions from R (a set of the real number)
to R and εij (i = 1, ..., n) depend independently and normally on mean 0 and
variance σ2

j . For the function mk, it is assumed that

mk(p(j)
ik ) =

Mjk∑
m=1

γ
(j)
mkb

(j)
mk(p(j)

ik ), i = 1, ..., n; k = 1, ..., qj, (2)

where {b(j)
1k , ..., b

(j)
Mjkk} is a prescribed set of basis functions (such as Fourier

series, polynomial bases, regression spline bases, B-spline bases, wavelet bases
and so on), the coefficients γ

(j)
1k , ..., γ

(j)
Mjkk are unknown parameters and Mjk is

the number of basis functions.
Then a nonparametric regression model can be written as a probability

density function in the form

fj(xij |pij ; γj , σ
2
j ) =

1√
2πσ2

j

exp

[
−{xij −

∑qj

k=1

∑Mjk

m=1 γ
(j)
mkb

(j)
mk(p

(j)
ik )}2

2σ2
j

]
, (3)

where γj = (γT
j1, ..., γ

T
jqj

)T is a parameter vector with γjk = (γ(j)
1k , ..., γ

(j)
Mjkk)T .

If a variable Xj has no parent variables, we consider the model based on the
normal distributions with mean µj and variance σ2

j .
Finally we have a Bayesian network model based on the nonparametric

regression model with Gaussian noise

f(xi; θG) =
p∏

j=1

fj(xij |pij ; θj), i = 1, ..., n,

where θG = (θT
1 , ..., θT

p )T is a parameter vector included in the graph G and θj

is a parameter vector in the model fj , i.e., θj = (γT
j , σ2

j )T or θj = (µj , σ
2
j )T .

3 Proposed criterion for choosing graph

Let π(θG|λ) be the prior distribution on the unknown parameter vector θG

with hyper parameter vector λ and let log π(θG|λ) = O(n). The marginal
probability of the data Xn is obtained by integrating over the parameter space,
and we choose a graph G with the largest posterior probability

πG

∫ n∏
i=1

f(xi; θG)π(θG|λ)dθG, (4)



where πG is a prior probability of G. Friedman and Goldszmidt12 considered
the multinomial distribution as the Bayesian network model f(xi; θG), and also
supposed the Dirichlet prior on the parameter θG. In this case, the Dirichlet
prior is the conjugate prior and the posterior distribution belongs to the same
class of distribution. Then a closed form solution of the integration in (4) is
obtained, and they called it BDe score for choosing graph6,16. Recall that the
BDe score is confined to the multinomial model, and we propose a criterion
for choosing graph in more general and various situations.

The essential problem of constructing criteria based on (4) is how to com-
pute the integration. While some methods can be considered for computing
the integration such as Markov chain Mote Carlo, we use the Laplace approxi-
mation for integrals7,17,24, because it is not necessary to consider the conjugate
prior. The Laplace approximation to the marginal probability of Xn is

∫ n∏
i=1

f(xi; θG)π(θG|λ)dθG =
∫

exp{nlλ(θG|Xn)}dθG

=
(2π/n)r/2

|Jλ(θ̂G)|1/2
exp{nlλ(θ̂G|Xn)}{1 + Op(n−1)},

where r is the dimension of θG,

lλ(θG|Xn) =
1
n

n∑
i=1

log f(xi; θG) +
1
n

log π(θG|λ),

Jλ(θG) = −∂2{lλ(θG|Xn)}/∂θG∂θT
G

and θ̂G is the mode of lλ(θG|Xn). Then we have a criterion, BNRC, for
selecting graph

BNRC(G) = −2 log

{
πG

∫ n∏
i=1

f(xi; θG)π(θG|λ)dθG

}

= −2 log πG − r log(2π/n) + log |Jλ(θ̂G)| − 2nlλ(θ̂G|Xn). (5)

The optimal graph is chosen such that the criterion BNRC (5) is minimal.
This criterion is derived under logπ(θG|λ) = O(n). If log π(θG|λ) = O(1),

the mode θ̂G is equivalent to the maximum likelihood estimate, MLE, and
the criterion is resulted in Bayesian information criterion, known as BIC20 by
removing the higher order terms O(n−j) (j ≥ 0). Konishi18 provided a general
framework for constructing model selection criteria based on the Kullback-
Leibler information and Bayes approach.



It is assumed that the prior density π(θG|λ) is decomposed into the prod-
uct of the prior densities on θj , πG(θG|λ) = π1(θ1|λ1)×· · ·×πp(θp|λp). Hence
lλ(θ̂G|Xn) and log |Jλ(θ̂G)| in (5) are, respectively,

p∑
j=1

l
(j)
λ (θ̂j|Xn) and

p∑
j=1

log

∣∣∣∣∣−∂2l
(j)
λ (θj|Xn)
∂θj∂θT

j

∣∣∣∣∣ ,

where

l
(j)
λ (θj|Xn) =

1
n

n∑
i=1

log fj(xij |pij ; θj) +
1
n

log πj(θj|λj). (6)

Thus the BNRC (5) can be obtained by the local scores of graph as follows:
We define the local BNRC for the j-th variable Xj by

BNRCj = −2 log

{
πLj

∫ n∏
i=1

fj(xij |pij ; θj)πj(θj |λj)dθj

}
, (7)

where πLj is a prior probability of the local structure associated with Xj. We
also apply Laplace’s method to the BNRCj and the BNRC is obtained by

BNRC = −2 log πG +
p∑

j=1

{BNRCj + 2 log πLj}.

Notice that the final graph is selected as a minimizer of the BNRC and it is not
necessary minimize each local score BNRCj, because the graph is constructed
as acyclic.

4 Estimating graph and related structures by using BNRC

In this section we express our method in more concrete terms. The key idea of
our proposed method is the use of the nonparametric regression and the new
criterion for choosing graph from Bayesian statistics.

As for nonparametric regres-
sion in Section 2, we use the
B-splines8 as the basis functions
in (2). Figure 1 is an exam-
ple of B-splines of degree 3 with
equidistance knots t1, ..., t10. We
place the knots dividing the domain
[mini(p

(j)
ik ), maxi(p

(j)
ik )] into Mjk−3

equidistance interval10 and set Mjk

B-splines of degree 3.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

b1k
( j) b2k

(j) b3k
(j) b4k

(j) b5k
(j) b6k

(j)

Figrure 1: Example of 6 B-splines of degree 3.
t1, ..., t10 are called knots. These knots are

equally spaced.



We assume that the prior distribution on the parameter vector θj is

πj(θj|λj) =
qj∏

k=1

πjk(γjk|λjk).

Each prior distribution πjk(γjk|λjk) is a singular Mjk variate normal distribu-
tion given by

πjk(γjk|λjk) =
(

2π

nλjk

)−(Mjk−2)/2

|Kjk|1/2
+ exp

(
−nλjk

2
γT

jkKjkγjk

)
, (8)

where λjk is a hyper parameter, Kjk is an Mjk × Mjk matrix, γT
jkKjkγjk =∑Mjk

l=3 (γ(j)
lk − 2γ

(j)
l−1,k + γ

(j)
l−2,k)2 and |Kjk|+ is the product of Mjk − 2 nonzero

eigenvalues of Kjk. The score BNRCj (7) can be obtained as

BNRCj = −2 log πLj − 2
n∑

i=1

log fj(xij |pij ; θ̂j) − 2
qj∑

k=1

log πk(γ̂jk|λjk)

+ log

∣∣∣∣∣−∂2l
(j)
λ (θ̂j|Xn)
∂θjθ

T
j

∣∣∣∣∣ − (
qj∑

k=1

Mjk + 1) log(2πn−1), (9)

where θ̂j = (γ̂T
j , σ̂2

j )
T is a mode of l

(j)
λ (θj |Xn) defined in (6) for fixed λjk.

For computational aspect, we approximate the logarithm of the determinant
of the Hessian matrix in (9) by

qj∑
k=1

{log |BT
jkBjk + nσ̂2

j λjkKjk| − Mjk log(nσ̂2
j )} − log(2σ̂4

j ),

where Bjk is an n × Mjk matrix defined by Bjk = (bjk(p(j)
1k ), ..., bjk(p(j)

nk ))T

with bjk(p(j)
ik ) = (b(j)

1k (p(j)
ik ), ..., b(j)

Mjkk(p(j)
ik ))T . Hence combining (3), (8) and

(9), BNRCj is resulted in

BNRCj = Cj + (n − 2qj − 2) log σ̂2
j

+
qj∑

k=1

{
nβjk

σ̂2
j

γ̂T
jkKjkγ̂jk + log |Λjk| − (Mjk − 2) log βjk

}
,

where βjk = σ2
j λjk is a hyper parameter,

Cj = −2 log πLj + (n + M̄j· − 2qj) log(2π) + n − log 2

−2(M̄j· − qj) log n −
qj∑

k=1

log |Kjk|+,



Λjk = BT
jkBjk + nβjkKjk, M̄j· =

qj∑
k=1

Mjk.

By using the backfitting algorithm15, the modes γ̂jk (k = 1, ..., qj) can be
obtained when the values of βjk are given. The backfitting algorithm can be
expressed as follow:
Step 1 Initialize: γjk = 0, k = 1, ..., qj.
Step 2 Cycle: k = 1, ..., qj, 1, ..., qj, 1, ...

γjk = (BT
jkBjk + nβjkKjk)−1BT

jk(x(j) −
∑
k′ �=k

Bjk′γjk′).

Step 3 Continue Step 2 until a suitable convergence criterion is satisfied.
The mode σ̂2

j is given by σ̂2
j = ||x(j) −

∑qj

k=1 Bjkγ̂jk||2/n.
In attention, the modes γ̂jk and σ̂2

j depend on the hyper parameters βjk

and we have to choose the optimal values of βjk. In the context of our method,
it is natural that the optimal βjk are chosen as the minimizers of BNRCj.

Recall that the B-splines coefficients vectors γjk are estimated by maximiz-
ing (6). The modes of (6) are the same as the penalized likelihood estimates22,25

and we can look upon the hyper parameters λjk or βjk as the smoothing param-
eters in penalized likelihood. Hence, the hyper parameters play an important
role for fitting the curve to the data.

5 Computational experiments

Monte Carlo simulation
Before analyzing the real data, we used the Monte Carlo simulation method

to examine the effectiveness of our method. The data were generated from an
artificial graph and structures between variables (Figure 2).
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Figure 2: Monte Carlo simulation.

(Left) true, (Right) estimate.

X1 = X2
2 + 2 sin(X5) − 2X7 + ε1

X2 = {1 + exp(−4X3)}−1
+ ε2

X3 = ε3, X6 = ε6, X9 = ε9

X4 = X
2
5 /3 + ε4, X5 = X3 − X

2
6 + ε5

X7 =

{−1 + ε7, X8 ≤ −0.5
X8 + ε7, −0.5 < X8 ≤ 0.5
1 + ε7, 0.5 < X8

X8 = exp(−X4 − 1)/2 + ε8

X10 = cos(X9) + ε10.



The results from this Monte Carlo simulation can be summarized as fol-
lows: Proposed criterion BNRC can detect linear and nonlinear structures of
the data very well. But the BNRC has a tendency toward overgrowth of graph.
We then consider the use of Akaike’s information criterion known as AIC1,2

and use both methods. AIC was originally introduced as a criterion for evalu-
ating models estimated by maximum likelihood method. But the estimate by
our method is the same as the maximum penalized likelihood estimates and is
not MLE. In this case, the modified version of AIC10 is given by

AIC = −2
n∑

i=1

log fj(xij |pij ; γ̂j , σ̂
2
j ) + 2(

qj∑
k=1

trSjk + 1),

where Sjk = Bjk(BT
jkBjk +nβ̂jkKjk)−1BT

jk. The trace of Sjk shows the degree
of freedom of the fitted curve and is a great help. That is to say, if trSjk is
nearly 2, the dependency is looked upon linear. We use both BNRC and AIC
for decision whether we add up to a parent variable. By using this method,
the estimated graph and structures are close to the true model.

Analysis of cell cycle data
We analyze the S.cerevisiae cell cycle data discussed by Spellman et al.21

and Friedman et al.13. The data were collected from 800 genes with 77 exper-
iments.
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Figure 3: BNRC scores for CNL2, CDC5 and SVS1.

We set the prior probability πG constant, because we have no reason why
the large graph is unacceptable and no information about the size of the true
graph. The nonparametric regressors are constructed with 20 B-splines. In
fact, the number of B-splines is also a parameter. However, we use somewhat
large number of B-splines, the hyper parameters control the smoothness of
fitted curve and we cannot visually find differences among fitted curves corre-
sponding to various number of B-splines.



The results of the analysis from the cell cycle data can be summarized as
follows: Figure 3 shows BNRC scores when we predict CLN2, CDC5 and SVS1
by one gene. The genes, which give smaller BNRC scores, give a better expres-
sion to the target gene. We can observe that which gene is associated with the
target gene and we find the set of genes which strongly depend on the target
gene. In fact, we can construct a brief network by using this information. We
can look upon the optimal graph as a revised version of the brief network by
choosing the parent genes and holding the assumption of acyclic. We note that
if there is a linear dependency between genes, the score BNRC is also good
when the parent-child relationship is reversed. Therefore, the directions of the
causal associations in the graph are not strict especially when the dependency
is almost linear. Our result basically advocates the result of Friedman et al.13,
but, of cause, there are different points in parts. There are some genes that me-
diate Friedman et al.’s result, such as MCD1, CSI2, YOX1 and so on. A large
number of the relationships between genes are nearly linear. But we could find
some nonlinear dependencies which linear models hardly find. Figure 5 shows
the estimated graph associated with genes which were classified their processes
into cell cycle and their neighborhood. Here, we omit some branches in Figure
5, but important information is almost shown. As for the networks given by us
and Friedman et al.13, we confirmed parent-children relationships and observed
that both two networks are similar to each other. Especially, our network in-
cludes typical relationships which were reported by Friedman et al.13. As for
the differences between two networks, we paid attention to the parent genes
of SVS1. Friedman et al.13 employed CLN2 and CDC5 as the parent genes of
SVS1. On the one hand, our result gives CSI2 and YKR090W for SVS1. We
check up on the difference of these two results. In the sense of BNRC and AIC,
our candidate parent genes are more appropriate than Friedman et al.13’s. The
reason might be the effect of discretizing, because our model suitably fits to
both cases in Figure 4. We notice that the range of the fitted curve in Figure
4 (b) is much smaller than other curves. All in all, we conclude that CDC5
gives just weak effects to SVS1 compared with other genes from Spellman et
al.21’s data (see also Figure 3). In fact, as the parent gene of SVS1, the order
of BNRC score of CDC5 is 247th. Considering the circumstances mentioned
above, our method can provide us valuable information in understandable and
useful form.
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Figure 4: Cell cycle data and smoothed estimates.
(a) and (b) Friedman et al.13, BNRC = 160.45, AIC=167.96;

(c) and (d) Proposed method, BNRC = 135.27, AIC=140.16.

6 Discussion

We proposed the new method for estimating genetic networks from microarray
gene expression data by using Bayesian network and nonparametric regression.
We derived a new criterion for choosing graph theoretically, and represented
its effectiveness through the Monte Carlo simulations and the analysis of the
cell cycle data. The advantages of our method are mainly as follows: We can
use the expression data as continuous values. Not only linear dependencies, we
can also detect nonlinear structures and can visualize their functional struc-
tures being easily understandable. Fully automatic search can accomplish the
creation of optimal graph.

We also pointed out that Friedman et al.13’s method remained the un-
known parameters such as threshold value for discretizing and hyper parame-
ters in the Dirichlet priors which selected by trial and error. These parameters
were not optimized in a narrow sense. On the other hand, our proposed method
can automatically and appropriately estimate any parameters based on pro-
posed criterion which has a sounder theoretical basis. Besides, our method
includes Friedman et al.13’s as a special case.

We consider the following problems as our future works: (1) We used
the statistical models based on Gaussian distribution. However, we derive the
criterion BNRC in more general situations. In fact, we can construct the graph
selection criterion based on other statistical models. (2) It is a possible case
that the outliers cause strange results. Thus, the development of the robust
methods and the technique for detecting the outliers are important problems.
(3) The intensities of the unions are probably measured by using bootstrap
method9. We would like to investigate these problems in a future paper.
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Figure 5: Cellcycle data result.
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