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We propose a new method for identifying and validating drug targets by using gene
networks, which are estimated from cDNA microarray gene expression profile data. We
created novel gene disruption and drug response microarray gene expression profile data
libraries for the purpose of drug target elucidation. We use two types of microarray gene
expression profile data for estimating gene networks and then identifying drug targets.
The estimated gene networks play an essential role in understanding drug response data

and this information is unattainable from clustering methods, which are the standard
for gene expression analysis. In the construction of gene networks, we use the Bayesian
network model. We use an actual example from analysis of the Saccharomyces cerevisiae

gene expression profile data to express a concrete strategy for the application of gene
network information to drug discovery.
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1. Introduction

Microarray technology has produced a large volume of genome-wide gene expres-

sion profile data under various experimental conditions such as gene disruptions,

gene overexpressions, shocks, cancer cells, etc. Along with this new data production,

there have been considerable attempts to infer gene networks from such gene expres-

sion profile data and several computational methods have been proposed together

with gene network models such as Boolean networks,2–5,15,16,21 differential equa-

tion models6,7,16 and Bayesian networks.9,10,12,13,18 While the paradigm of using

microarray technology with the clustering technique has made tremendous impacts

on biomedical research and practice,8,22 the strategy enhanced with computational

gene network analysis has not yet been well examined for practical applications. In

this paper, we propose a novel method for identifying and validating drug targets

by exploiting two computational methods for inferring gene networks from cDNA

microarray data. We show the whole process of analysis by using an antifungal

medicine as a drug and Saccharomyces cerevisiae cDNA microarrays that actually

extracted candidate genes as targets of this drug.

Our strategy is summarized in Fig. 1. Gene regulatory pathway information

is essential in this scheme. In order to create this information, we have prepared

two kinds of cDNA microarray data for constructing gene networks. One is gene

expression profile data obtained from 120 gene disruptions, where mostly transcrip-

tion factors are disrupted, one for each microarray. We denote this data set as a

matrix X for convenience. The other is gene expression profile data obtained from

expression experiments of several dose and time responses to the drug (we denote

this data set as a matrix Y ). Then the process of identifying drug targets consists

of two steps. The first step is to identify the genes directly affected by the drug. For

this purpose, the most straightforward approach might be the fold-change analysis

of the data set Y . However, in order to find genes directly affected by the drug,

we took another method16 which is more suited for inferring qualitative relations

between genes. Based on this method, we describe a method named virtual gene

technique where we regard the drug as a “virtual gene” and generate a multi-level

directed acyclic graph with this virtual gene as the root by using both data sets

X and Y . From this graph, we can identify genes which may be directly affected

by the drug while the fold-change analysis of the data set Y just may provide us

genes directly or indirectly affected by the drug. The second step is to find “drug-

gable genes” that regulate the drug-affected genes most strongly from the upstream

of the gene network. For this purpose, we employed a method based on Bayesian

network model12,13 to construct a gene network from the data set X. With this

gene network, we could explore the gene network for the druggable genes related

to the drug-affected genes very effectively. For this gene network exploration, we

have also developed a gene network analysis tool called G.NET that provides a

computational environment for various path searches among genes with annotated

gene network visualization. This total system constitutes our method.
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Fig. 1. Schematic view.

In this paper, we first discuss the computational methods employed for gene

network analysis from microarray data. In addition, we also discuss clustering

methods for our purpose since clustering8,22 has become a standard method for

analyzing microarray gene expression profile data. Then we explain how microarray

data have been prepared and analyzed. By examining the computational analysis

with G.NET, we demonstrate the effectiveness of our gene network strategy for

identifying genes for the drug target.

2. Gene Network Models for Identifying Drug Targets

From the viewpoint of reverse engineering, several models for gene network have

been proposed together with algorithms for constructing gene networks from

microarray data. They may be roughly classified into three models by Boolean

network model,2–5,15,16,21 model defined as a system of ordinary differential

equations,6,7 and statistical network model.9,10,12,13,18,23 Reverse engineering algo-

rithms also heavily rely on characteristics of measurements, e.g. time-course data or

not, disruption, overexpression, various shocks, hormone stimulus, drug response,

developmental change, etc. None of them may be perfect by itself. However, a
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sophisticated combination of these methods for specific microarray measurements

would yield possibilities for new applications.

Two kinds of cDNA microarray measurements of Saccharomyces cerevisiae have

been prepared for our purpose. One is the microarray data obtained by gene disrup-

tions, and the other is a time-course data of responses to an antifungal medicine.

The number of disruptants is 120 for the first data and the time-course data for

one dose consists of five microarrays. The details about these data are given in

Sec. 3. For these data, we employ two gene network models and algorithms for gene

network estimation so that combination of two models can cover the shortcomings

each other and we can obtain more reliable information by using both network

methods.

2.1. Virtual gene technique for identifying drug affected genes

The first task is to find genes directly affected by the drug. For this purpose, we

regard the drug as a “virtual gene” and we consider that the state of this virtual

gene is 1 (ON) if the drug is dosed, and otherwise it is 0 (OFF).

The idealistic approach for identifying the genes directly affected by the virtual

gene may be to use the Boolean network model and to apply the method developed

by Akutsu et al.2 for inferring Boolean network model that can suggest a series of

mutants for identifying the network. However, it requires multiple disruptions and

overexpressions for one mutant and the number of mutants required for identifying

the network is not realistic even for a small network. Therefore this is not in our

scope since we can deal with only single gene disruptants in our measurement

experiment. Instead, we focus on a simpler network model whose structure is a

multi-level directed acyclic graph (dag).16 Maki et al.16 have also proposed a naive

algorithm for constructing a multi-level dag based on information how a single

gene disruption affects other genes. We use this method for finding genes directly

affected by the drug by regarding the drug as a gene and we call it the virtual gene

technique. Here we roughly explain the method.

Let V = {g1, g2, . . . , gn} be the set of all genes and D = {d1, . . . , dm} ⊆ V be the

set of genes to be disrupted. We assume D contains the virtual genes corresponding

to the drug. Our cDNA microarray compares the gene expression level of a mutant

with that of a wild type for each gene. From a gene disruption experiment for gene

di, we obtain a microarray data Edi
[gj ] (1 ≤ j ≤ n). Then by setting a threshold

θ, we define a relation R as follows:

R(a, b) =

{

1 if a ∈ D and Ea[b] > θ or Ea[b] < 1/θ

0 otherwise
.

By using the transitive closure R∗ of R, we define an equivalence relation ≡R∗ on

V by a ≡R∗ b if and only if a, b ∈ D and R∗(a, b) = 1 ∧ R∗(b, a) = 1. Then a new

relation R̂ on the equivalence classes of ≡R∗ is defined by R̂([a], [b]) = R∗(a, b) for

a, b ∈ V . Note that R̂ is well-defined by the definition of ≡R∗ . R̂ defines a directed
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Fig. 2. Graphical view of the virtual gene technique. “D.gene A” means this microarray is observed
by disrupting gene A. The dotted circle shows the equivalence class.

acyclic graph Ĝ on the set of equivalence classes, where self-loop edges are ignored.

An indirect edge ([a], [b]) of Ĝ is an edge such that there is another path from [a]

to [b] in Ĝ. By removing all indirect edges from Ĝ, we obtain a multi-level dag (see

Maki et al.16 for more details about the construction). Figure 2 shows an example

of the resulting network based on the virtual gene technique. Finally, by considering

the dag whose root is the virtual gene, the children of this virtual gene would be

the candidate genes directly affected by the drug.

The advantages of the use of the multi-level dag model are as follows:

(a) This model is very simple and can be easily understood, (b) the model shows

the parent-child relations correctly, when the data has sufficient accuracy and in-

formation. However, this method requires discretization of the expression values

into two levels (0 or 1), and the quantization probably causes information loss. By

choosing the threshold θ appropriately in a heuristic manner, it is reported that this

naive algorithm works well in practice1,16 although the method is not theoretically

well-founded.
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2.2. Bayesian network

After identifying the genes directly affected by the drug, the next step is to find

genes upstream of the drug-affected genes. For this purpose, we employ the Bayesian

network model14 and use the method that we developed for constructing Bayesian

networks from perturbated gene expression profile data.12,13

The Bayesian network is a graph representation of the complex relations of

a large number of random variables. We consider the directed acyclic graph with

Markov relations of nodes in the context of Bayesian network. We can thus describe

complex phenomena through conditional probabilities instead of the joint probabil-

ity of the random variables. That is, suppose that we have a gene expression value

xij of ith array and jth gene for i = 1, . . . , n and j = 1, . . . , p, we have the decompo-

sition f(xi1, . . . , xip) = f1(xi1|pi1)× · · · × fp(xip|pip), where pij = (p
(j)
i1 , . . . , p

(j)
iqj

)T

is a qj -dimensional parent observation vector of xij . Here p
(j)
ik is an observation of

kth parent of jth gene measured by ith microarray.

Friedman et al.9 proposed an interesting approach for estimating a gene network

from gene expression profiles. They discretized the expression values into three val-

ues and used the multinomial distributions as the conditional distributions of the

Bayesian network. However, a problem remains to be solved in choosing the thresh-

old values for discretizing. Imoto et al.12,13 recently used the nonparametric regres-

sion model xij = mj1(p
(j)
i1 ) + · · ·+ mjqj

(p
(j)
iqj

) + εij , that offers a solution that does

not require quantization. Here, εij depends independently and normally on mean 0

and variance σ2
j and mjk(x) is a smooth function, which is constructed by B-splines,

of the form mjk(p
(j)
ik ) =

∑Mjk

m=1 γ
(j)
mkb

(j)
mk(p

(j)
ik ) for k = 1, . . . , qj , where γ

(j)
1k , . . . , γ

(j)
Mjkk

are unknown coefficients and b
(j)
1k (x), . . . , b

(j)
Mjkk(x) are B-splines. Hence, the non-

linear Bayesian network model is defined by

f(xi; θ) =

p
∏

j=1

exp






−







xij −

qj
∑

k=1

Mjk
∑

m=1

γ
(j)
mkb

(j)
mk(p

(j)
ik )







2
/

2σ2
j







/

√

2πσ2
j .

If we set the network structure, we can estimate the nonlinear Bayesian network

model by a suitable procedure. However, we must choose an optimal network struc-

ture, which gives the best representation of the phenomenon described by the data.

Therefore, Imoto et al.12,13 derived a new criterion, named BNRC (Bayesian net-

work and Nonparametric Regression Criterion), for selecting a network from Bayes

approach. The BNRC is defined as an approximation of the posterior probability of

the network by using the Laplace approximation for integrals. Imoto et al.12,13 ap-

plied the proposed method to the Saccharomyces cerevisiae gene expression profile

data and estimated a gene network. The advantages of this method are as follows:

(a) We can analyze the gene expression profiles as continuous data, (b) this model

can detect not only linear structures but also nonlinear dependencies between genes

and (c) the proposed criterion can optimize the parameters in the model and the

structure of the network automatically. Note that the Bayesian network model

based on the linear regression is included in our model as a special case.
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The Bayesian network has theoretical advantageous base on the mathematics,

and, in this paper, we use the method proposed by Imoto et al.12,13 for construct-

ing Bayesian networks. Unfortunately, the Bayesian network cannot construct cyclic

regulations and are not useful for creating multilevel directional models of regula-

tory effects from data created from logical joins of expression profile data from

disruptants and drug response experiments. However, since our purpose is to find

genes in the upstream of the drug-affected genes, this drawback is not actually

serious in practice.

We applied our method to the gene expression profile data of 120 disruptants

and created a Bayesian network consisiting of 735 genes. Then by mapping the

drug-affected genes obtained as in Sec. 2.1 to the this network, we can analyze

the genes controling them in the upstream. For this analysis, we also developed

a network visualization software G.NET for various networks including Bayesian

networks. Snapshots of the software are shown in Figs. 4 and 5.

3. Application

3.1. Microarray data

We created two libraries of cDNA microarray data from the Saccharomyces cere-

visiae gene expression profiles. One is obtained by disrupting 120 genes, and the

other is comprised of the responses to the antifungal drug. We used the BY4741

(MATa, HIS3D1, LEU2D0, MET15D0, URA3D0) as the wild type strain and

purchased gene disruptions from Research Genetics, Inc. We selected 735 genes

from the yeast genome for identifying drug targets. These genes are selected as

follows: First, we have collected 314 genes which are known as transcription factors.

98 of these 314 genes have already been studied for their control mechanisms. The

expression profile data for 735 genes chosen for our analysis includes the genes

controlled by these 98 transcription factors from 5871 genes in addition to nuclear

receptor-like genes which have a pivotal role in gene expression regulation and are

popular drug targets. We have constructed the Bayesian network models of these

735 genes from 120 gene disruption conditions. As for normalizing microarray data,

we first applied the total intensity notmalization that adjusts each ratio such that

the mean ratio is equal to one. For local normalization, the linear regression was

then performed to each pen group, which is a group of genes deposited by a spot-

ting pen, for correcting systematic bias of each pen group. As for normalization, we

referred to Quackenbush.19

As for the drug response microarray gene expression profile data, we incubated

yeast cultures in dosages of 10, 25, 50 and 100 mg/ml of an antifungal medication

in culture and took aliquots of the culture at five time points (0, 15, 30, 45 and

60 minutes) after addition of the agent. Here time 0 means the start point of

this observation and just after exposure to the drug. We then extracted the total

RNA from these experiments, labeled the RNA with cy5, hybridized them with

cy3 labeled RNA from non-treated cells and applied them to full genome cDNA



November 5, 2003 22:59 WSPC/185-JBCB 00029

466 S. Imoto et al.

microarrays thus creating a data set of 20 microarrays for drug response data.

Actually, we measured two or three microarrays for some of each experiment. We

observed that the expression patterns of our microarrays at the same condition

are very close. Therefore we used one microarray against a time point or a gene

disruption for the following analysis. In this paper, we use these 140 microarrays

to elucidate drug targets using gene networks.

3.2. Result

3.2.1. Clustering result

For identification of the drug targets, the popular but problematic strategy is the use

of clustering methods.11,17 Clustering methods provide the gene group information

via the similarity of the expression patterns. We have two types of microarray data,

gene disruption and drug response, allowing us to compare drug response patterns

to gene expression patterns caused by disruption. In the clustering analysis, if there

would be a significant and strong similarity between the expression patterns of a

single disruptant or group of disruptants and a given drug response microarray, we

might conclude that the drug probably plays the same role as the disrupted gene.

Moreover, if this disrupted gene would have known functional role, we could obtain

more information about the response to the drug. We examined this strategy with

our data.

We combine the two types of data and make the matrix Z = (X : Y ),

where X and Y are the gene disruption and the drug response microarray data,

respectively, and implement the hierarchical clustering based on the complete-

linkage method to cluster the microarrays. The similarity metric we used is the

uncentered correlation.8 Unfortunately, as is often the case with such experi-

ments, we could not gain such a straightforward result from clustering our data.

Figure 3 shows the hierarchical clustering result for the combined gene expres-

sion profile data. It is clear that the drug response microarrays make one cluster

and are separated from the disruption microarrays. From this result, we cannot
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extract any interactions between drug response data and gene disruption data.

We further implemented hierarchical clustering of the gene disruption and drug

response microarrays with various distances and metrics, however the results were

essentially unchanged.

3.2.2. Application of virtual gene technique

We applied the virtual gene technique shown in Sec. 2.1 to the microarray data Z

which was created by the combining gene disruption and drug response microarrays.

We consider the conditions of the drug responses data as virtual genes, e.g., the con-

dition 100 mg/ml and 30 min is given an assignment as the gene YEXP100mg30min.

By using the network model introduced in Sec. 2.1, we can find the child genes of

these virtual genes with the drug affecting these child genes in progeny generational

order. That is, at first, we can find the downstream genes of the virtual gene and

the information of the gene disruption microarray data can be used for understand-

ing the regulation pathway of these downstream genes. Here, we set a different

threshold θ for each microarray. That is, as for the jth microarray’s threshold θj ,

we set θj = 2ŝ2
j , where ŝ2

j is the estimated variance of jth microarray. We then

focus on genes that have five or more virtual genes as the parent genes as the pu-

tative drug-affected genes. That is, genes are under direct influence of the virtual

genes. However, a gene that has only one virtual gene as its parent may be the

primary drug-affected gene, depending on the mode of action for a given drug and

this must be analyzed on a case by case basis. Thus the virtual gene technique high-

lights its advantage in the initial screening for genes under drug-induced expression

influence.

In addition, fold-change analysis can provide similar information to the proposed

virtual gene technique. In fact, we can obtain the differentially affected genes under

certain experimental condition by fold-change analysis. However, our virtual gene

technique can improve the result of the fold-change analysis. Conceptually, suppose

we find that geneA and geneB are affected by the drug from fold-change analysis.

The fold-change analysis cannot take into account the baseline interactions between

geneA and geneB. That is, if there is a regulation pathway between geneA and geneB

that geneA → geneB, the geneB is probably not affected by the drug directly.

The virtual gene technique can take into account such interaction by using the

information of the gene disruption data and thus reduces the search set to more

probable target genes. In Fig. 4, we put the expression ratios of more than two-fold

next to the genes. If we set two-fold as the threshold of the fold-change analysis,

we conclude that the genes, which have more than two-fold expression ratios, are

affected by the drug. However, by using the gene disruption microarray data, we

can find the regulations of the downstream of the virtual gene and can understand

whether the gene is actually affected by the drug. Indeed, some high expression ratio

genes are not directly affected by the drug, they are probably the false-positives of

the fold-change analysis.
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Fig. 4. The downstream pathway of the virtual gene YEXP100mg30min. The shadowed genes are
affected by the drug.

There is no guarantee that genes that are most affected by the drug are the

genes that were “drugged” by the drug agent, nor is there any guarantee that the

drugged target represents the most biologically available and advantageous molec-

ular target for intervention with new drugs. Thus, even after identifying probable

molecular modes of action, we should find the most druggable genes upstream of

the drug-affected genes in a regulatory network and to then screen low molecular

weight compounds for drug activity on those targets. In the network model used

for the virtual gene technique, the virtual genes should be placed on the top of the

network. Therefore, it is difficult or sometimes impossible to find upstream infor-

mation of the drug-affected genes in this network. At this stage, we can use the

Bayesian network model for exploring the upstream of the drug-affected genes in

an effective manner.

3.2.3. Exploring upstream of genes with Bayesian network

The gene network is estimated by the Bayesian network and nonparametric re-

gression method together with BNRC optimization strategy.12,13 We use the

Saccharomyces cerevisiae microarray gene expression profile data obtained by
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disrupting 120 genes. The druggable genes are the drug targets related to these

drug-affected genes, which we want to identify for the development of novel leads.

We can explore the druggable genes upstream of the drug-affected genes in the

estimated gene network by the Bayesian network method. Here, we focus on the

nuclear receptor-like genes as the druggable genes because: (a) In general, nuclear

receptor proteins are known to be useful drug targets and together represent over

20 percent of the targets for medications presently in the market. (b) Nuclear recep-

tors are involved in the transcription regulatory affects that are directly measured

in cDNA microarray experiments.

Figure 5 shows a partial resulting network, which includes the drug-affected

genes (bottom) identified by the virtual gene technique, the druggable genes (top)

that are the nuclear receptor-like genes and the intermediary genes (middle). The

druggable genes in the circle connect directly to the drug-affected genes and other

druggable genes have one intermediary gene per one druggable gene. Of course, we

can find more pathways from the druggable genes to the drug-affected genes if we

admit more intermediary genes. Due to the use of the Bayesian network model, we

can find the intensities of the edges and can select more reliable pathway. This is
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mediary genes (middle).
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Table 1. The druggable genes of MAL33 and CDC6. “Parents” means these genes connected

directly to the drug-affected genes. “Grandparents” means there is one intermediary gene
between these genes and the drug-affected genes.

Drug-affected MAL33 (YBR297W) : Maltose fermentation regulatory protein

Druggable P arents

HSP82 (YPL240C) : Heat shock protein
SRB4 (YER022W) : DNA-directed RNA polymerase II holoenzyme and

Kornberg’s mediator (SRB) subcomplex subunit

Grandparents

BAR1 (YIL015W) : Barrierpepsin precursor
GPA1 (YHR005C) : GTP-binding protein alpha subunit of the pheromone

pathway
KAR2 (YJL034W) : nuclear fusion protein

Drug-affected CDC6 (YJL194W) : Cell division control protein

Druggable P arents

ARP7 (YPR034W) : Component of SWI-SNF global transcription activator
complex and RSC chromatin remodeling complex

BAR1 (YIL015W) : Barrierpepsin precursor

Grandparents

GAL11 (YOL051W) : DNA-directed RNA polymerase II holoenzyme and
Kornberg’s mediator (SRB) subcomplex subunit

FAR1 (YJL157C) : Cyclin-dependent kinase inhibitor (CKI)
SLA2 (YNL243W) : Cytoskeleton assembly control protein

an advantage of the Bayesian network model in searching for ideal druggable targets.

From Fig. 5, we can find the druggable genes for each drug-affected gene, e.g. we

can find the druggable genes for MAL33 and CDC6 shown in Table 1.

The drug-affected gene CDC6 in Table 1 is a protein that regulates the initi-

ation of DNA replication. It binds to origins of replication at the end of mitosis,

directing the assembly and disassembly of MCM proteins and the pre-replication

complex. It is a member of the AAA+ family of ATPases. The genetic mechanism

and effectiveness of this antifungal medication was made clear by this result. It was

investigated that the localization of CDC6p is nulear. This means that any other

extracellular molecule, like drug, cannot affect it directly. Thus our result indicates

through the gene network analysis a mechanism that CDC6 is influenced by the

extracellular molecule.

4. Discussion

In this paper, we proposed a new strategy for identifying and validating drug tar-

gets using computational models of gene networks. We showed that the clustering

methods cannot provide the sufficient information and there is a need for the kind

of hierarchical interaction data provided by gene network methods. We focuses

on two models of gene networks for estimating gene networks from microarray

gene expression profile data. Theses two methods are originally proposed from the
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different points of view. However, both methods have relative strengths and weak-

ness and we can obtain more reliable information by a harmonized use of these

two methods in our analysis. We described the practical advantages of the virtual

gene technique over results obtained from simple fold-change analysis for identi-

fying drug-affected genes. On the other hand, for exploring the druggable genes

upstream of the drug-affected genes, the Bayesian network approach was shown to

be very effective. The Bayesian network model can provide the information of the

upstream of the drug-affected genes effectively and we can thus attain a set of can-

didate druggable genes for each drug-affected gene. The strategy proposed by this

paper is established based on the sophisticated use of a combination of two network

methods. The strength of each network method can be clearly seen in this strategy

and the proposed integrated method can provide a methodological foundation for

the practical application of bioinformatics techniques for gene network inference in

the identification and validation of drug targets. In practice, biological experiments

that disrupt the target druggable genes are needed for confirming the results of

the analysis.20 We should also note that the visualized gene network analysis soft-

ware G.NET played an important role in extracting subnetworks from the messy

interactions of 735 genes.
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