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Abstract. Recently, cDNA microarray experiments have generated large
amounts of gene expression data. In time-ordered gene expression data,
the expression levels are measured at several points in time following
some experimental manipulation. A gene regulatory network can be in-
ferred by describing the gene expression data in terms of a linear system
of differential equations. As biologically the gene regulatory network is
known to be sparse, we expect most coefficients in such a linear system of
differential equations to be zero. In previously proposed methods to infer
a linear system of differential equations, some ad hoc assumptions are
made to limit the number of nonzero coefficients in the system. Instead,
we propose to infer the degree of sparseness of the gene regulatory net-
work from the data, where we determine which coefficients are nonzero
by using Akaike’s Information Criterion.

1 Introduction

The recently developed cDNA microarray technology allows gene expression lev-
els to be measured for the whole genome at the same time. While the amount of
available gene expression data has been increasing rapidly, the required math-
ematical techniques to analyse such data is still in development. Particularly,
deriving a gene regulatory network from gene expression data has proven to be
a difficult task.

In time-ordered gene expression measurements, the temporal pattern of gene
expression is investigated by measuring the gene expression levels at a small
number of points in time. Periodically varying gene expression levels have for in-
stance been measured during the cell cycle of the yeast Saccharomyces Cerevisiae
[1]. The gene response to a slowly changing environment has been measured dur-
ing the diauxic shift of the same yeast [2]. In other experiments, the temporal
gene expression pattern due to an abrupt change in the environment of the or-
ganism is measured. As an example, the gene expression response was measured
of the cyanobacterium Synechocystis sp. PCC 6803 after to sudden shift in the
intensity of external light [3].

A number of methods have been proposed to infer gene interactions from
gene expression data. In cluster analysis [2, 4, 5], genes are grouped together



2

based on the similarity between their gene expression profiles. Several measures
of sensitivity can be used, such as the Euclidean distance, correlation, or an-
gle between two vectors containing the gene expression data. Inferring Boolean
or Bayesian networks from measured gene expression data has been proposed
previously [6–9], as well as modelling gene expression data using an arbitrary
system of differential equations [10]. However, a long series of time-ordered gene
expression data would be needed to reliably infer such an arbitrary system of
differentional equations. This is currently often not yet available.

Instead, we will consider inferring a linear system of differential equations
from gene expression data. This approach maintains the advantages of quan-
titativeness and causality inherent in differential equations, while being simple
enough to be computationally tractable.

Previously, modelling biological data with linear differential equations was
considered theoretically by Chen [11]. In this model, both the mRNA and the
protein concentrations were described by a system of linear differential equations.
Such a system can be described as

d
dt

x (t) = M · x (t) , (1)

in which M is a constant matrix with units of [second]−1, and the vector x (t)
contains the mRNA and protein concentrations as a function of time. To infer
the coefficients in the system of differential equations from measured data, two
methods were suggested.

The first method expands the measured gene expression data in a Fourier
series with a limited number of Fourier components. This number was chosen to
be equal to the number of time points at which the gene expression level was
measured. Using more Fourier components would lead to an underdetermined
system.

The second method is to discretise the system of differential equations, substi-
tute the measured mRNA and protein concentrations, and to solve the resulting
linear system of equations in order to find the coefficients in the system of linear
differential equations. The system is simplified by assuming that the concen-
tration of one protein does not affect other proteins directly, and similarly for
genes, in addition to the assumption that one type of mRNA is involved in the
production of one type of protein only. However, the resulting system of equa-
tions is still underdetermined. Using the additional requirement that the gene
regulatory network should be sparse, it is shown that the model can be con-
structed in O

(
mh+1

)
time, where m is the number of genes and h is the number

of non-zero coefficients allowed for each differential equation in the system [11].
The parameter h is chosen ad hoc.

Although describing a gene regulatory network with differential equations
is appealing, there is one drawback of the method proposed by Chen. For a
given parameter h, each column in the matrix M will have exactly h nonzero
elements. This means that every gene or protein in the system affects h other
genes or proteins. This has two consequences:
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– No genes or proteins can exist at the bottom of a network. Every gene and
protein is the parent of h other genes or proteins in the network.

– The network that is found inevitably contains loops.

While feedback loops are likely to exist in gene regulatory networks, the loops
that are found using this method are artificially produced by the method itself.
The method dictates the existance of loops. Instead, we would like to determine
the existance of loops in the gene regulatory network from the data.

At the other extreme, no loops are allowed in Bayesian networks. Bayesian
networks rely on the joint probability distribution of the estimated network being
able to be decomposed in a product of conditional probability distributions. This
decomposition is possibly only in the absence of loops. In addition, Bayesian
networks tend to contain many parameters, and therefore a large amount of
data is needed to estimate such a model.

We therefore aim to find a method that can allows the existance of loops in
the network, but does not dictate their presence. Using equation (1), we also
construct a sparse matrix by limiting the number of non-zero coefficients that
may appear in the system. However, we do not choose this number ad hoc;
instead, we estimate the number of nonzero parameters from the data by using
Akaike’s Information Criterion (AIC). This enables us to obtain the sparsity
of the gene regulatory network from the gene expression data. In contrast to
previous methods, the number of gene regulatory pathways is allowed to be
different for each gene.

Usually, in cDNA microarray experiments only the gene expression levels
are found by measuring the corresponding mRNA concentrations, whereas the
protein concentration is unknown. To analyze the results from such experiments,
we therefore construct a system of differential equations in which genes are
allowed to affect each other directly, since proteins are no longer available in
the model to act as an intermediary. The vector x then contains only the mRNA
concentrations only, and matrix M describes gene-gene interactions only.

2 Method

Consider the gene expression ratios of m genes as a function of time. At a given
time t, the expression ratios can be expressed as a vector x (t) with m entries.
The interactions between these genes can be described quantitatively in terms of
a system of differential equations. Several forms can be chosen for the differential
equations. We have chosen a system of linear differential equations (1), which is
the simplest possible model. This equation can be solved as

x (t) = exp
(
Mt

) · x0, (2)

in which x0 is the gene expression ratio at time zero. In this equation, the matrix
exponential is defined by the Taylor expansion of the exponential function [12]:

exp
(
A

) ≡
∞∑

i=0

1
i!

Ai. (3)
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Since equation (2) is nonlinear in M , it will still be very difficult to solve for M
using experimental data. We therefore approximate the differential equation (1)
by its discretized form:

∆x

∆t
= M · x . (4)

We can now substitute a given set of time-ordered gene expression data xti
at

times ti, i ∈ {1, . . . , n}. We find

xti
− xti−1

= (ti − ti−1) ·M · xti−1
. (5)

To this equation we can add a error εti
, which will invariably be present in the

data:
xti

− xti−1
= (ti − ti−1) ·M · xti−1

+ εti
. (6)

By using this equation, we effectively describe a gene expression network in terms
of a multidimensional linear Markov model.

We assume that the measurement error has a normal distribution indepen-
dent of time:

f
(
εt; σ

2
)

=
(

1√
2πσ2

)m

exp
{
−εT

t · εt

2σ2

}
, (7)

with a standard deviation σ equal for all genes at all times. The log-likelihood
function for a series of measurements at n time points is then

L
(
M, σ2

)
= −nm

2
ln

[
2πσ2

]− 1
2σ2

n∑

i=1

ε̂Tti
· ε̂ti

, (8)

in which
ε̂ti

= xti
− xti−1

− (ti − ti−1) ·M · xti−1
(9)

is the measurement error at time ti estimated from the measured data.
The maximum likelihood estimate of the variance σ2 can be found by max-

imising the log-likelihood function with respect to σ2. This yields

σ̂2 =
1

nm

n∑

i=1

ε̂ (ti)
T · ε̂ (ti) . (10)

Substituting this into the log-likelihood function (8) yields

L
(
M, σ2 = σ̂2

)
= −nm

2
ln

[
2πσ̂2

]− nm

2
. (11)

The maximum likelihood estimate M̂ of the matrix M can now be found by
minimizing σ̂2. By taking the derivative of equation (10) with respect to M , we
find that σ̂2 is minimized for

M̂ = A−1 ·B , (12)
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where the matrices A and B are defined as

A ≡
n∑

i=1

[
(ti − ti−1)

2 · xi−1 · xT
i−1

]
(13)

and

B =
n∑

i=1

[
(ti − ti−1) ·

(
xi − xi−1

) · xT
i−1

]
. (14)

In the absence of errors, the estimated matrix M̂ is equal to the true matrix
M . We know from biology that the gene regulatory network and therefore M is
sparse. However, the presence of noise in experiments would cause most or all of
the elements in the estimated matrix M̂ to be nonzero, even if the corresponding
element in the true matrix M is zero. We can determine if a nonzero matrix
element is due to noise by setting it equal to zero and recalculating the total
squared error as given in equation (10). If the increase in the total squared error
is small, we conclude that the previously calculated value of the matrix element
is due to noise.

Formally, we can decide if matrix elements should be set to zero using
Akaike’s Information Criterion [13, 14]

AIC = −2 ·
[ log-likelihood of the

estimated model

]
+ 2 ·

[
number of estimated

parameters

]
(15)

in which the estimated parameters are σ̂2 and the elements of the matrix M̂
that we allow to be nonzero. The AIC avoids overfitting of a model to data by
comparing the total error in the estimated model to the number of parameters
that was used in the model. The model which has the lowest AIC is then con-
sidered to be optimal. The AIC is based on information theory and is widely
used for statistical model identification, especially for time series model fitting
[15].

Substituting the estimated log-likelihood function from equation (11) into
equation (16), we find

AIC = nm ln
[
2πσ̂2

]
+ nm + 2 ·

[
number of nonzero

elements in M̂

]
. (16)

From this equation, we see that while the squared error increases, the AIC may
decrease as the number of nonzero elements decreases. A gene regulatory network
can now be estimated using the following procedure. Starting from the measured
gene expression levels xi at time points ti, we calculate the matrices A and B as
defined in equations (13) and (14). We find the maximum likelihood estimate M̂
of the matrix M from equation (12). The corresponding squared error is found
from equations (9) and (10). Equation (16) gives us the AIC for the maximum
likelihood estimate of M . We then generate a new matrix M̂

′
from M̂ by setting

a set of matrix elements equal to zero. We recalculate the squared error and the
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AIC for this modified matrix M̂
′
. The matrix M̂

′
, and a corresponding set of

zeroed matrix elements, with the lowest AIC is then the final estimated gene
regulatory network.

In typical cDNA microarray experiment, the number of genes is several thou-
sands. Usually only a small number of genes (several tens to hundreds) are af-
fected by the experimental manipulation. The matrix M is therefore quite large,
and the number of sets of zeroed matrix elements is extremely large. An exhaus-
tive search to find the optimal combination of zeroed matrix elements is therefore
not feasible. Instead, we propose a greedy search. First, we randomly choose an
initial set of matrix elements that we set equal to zero. For every matrix element,
we determine if the AIC is reduced if we change the state of the matrix element
between zeroed and not zeroed. If the AIC is reduced, we change the state of
the matrix element and continue with the next matrix element. This process is
stopped if the AIC can no further be reduced. We repeat this algorithm many
times starting from different initial sets of zeroed matrix elements. If the algo-
rithm described above yields the same set of zeroed elements several times, we
can assume that no other sets of zeroed elements with a lower AIC exist.

3 Discussion

We have shown a method to derive a gene regulatory network in the form of a
linear system of differential equations from measured gene expression data. Due
to the limited number of time points at which measurements are typically made,
finding a gene regulatory network is usually an underdetermined problem. Since
in biology the resulting gene regulatory network is expected to be sparse, we set
most of the matrix entries equal to zero, and derived a network using only the
nonzero entries. The number of nonzero entries, and therefore the sparsity of the
network, was derived from the data using Akaike’s Information Criterion.

Describing a gene network in terms of differential equations has three advan-
tages. First, the set of differential equations describes causal relations between
genes: a coefficient Mij of the coefficient matrix determines the effect of gene j
on gene i. Second, it describes gene interactions in an explicitly numerical form.
Third, because of the large amount of information present in a system of differ-
ential equations, other network forms can easily be derived from it. We can also
link the inferred network to other analysis or visualisation tools, for instance
Genomic Object Net [16].

In previously described methods to derive gene regulatory networks from
gene expression data, either loops cannot be found (Bayesian networks) or the
method artificially generates loops in the network. While the method proposed
here allows loops to be present in the network, it does not require their existence.
Loops are only found if the measured data warrant them. We aim to apply our
method to measured gene expression data to evaluate its usefulness in practice.
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