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We describe a new method to infer a gene regulatory network, in terms of a lin-
ear system of differential equations, from time course gene expression data. As
biologically the gene regulatory network is known to be sparse, we expect most co-
efficients in such a linear system of differential equations to be zero. In previously
proposed methods, the number of nonzero coefficients in the system was limited
based on ad hoc assumptions. Instead, we propose to infer the degree of sparseness
of the gene regulatory network from the data, where we use Akaike’s Information
Criterion to determine which coefficients are nonzero. We apply our method to
MMGE time course data of Bacillus subtilis.

1 Introduction

The recently developed cDNA microarray technology allows gene expression
levels to be measured for the whole genome at the same time. While the
amount of available gene expression data has been increasing rapidly, the re-
quired mathematical techniques to analyze such data is still in development.
Particularly, deriving a gene regulatory network from gene expression data has
proven to be difficult.

In time-ordered gene expression measurements, the temporal pattern of
gene expression is investigated by measuring the gene expression levels at a
small number of points in time. Periodically varying gene expression levels
have for instance been measured during the cell cycle of the yeast Saccha-
romyces cerevisiae.1 The gene response to a slowly changing environment has
been measured during the diauxic shift of the same yeast.2 Other experiments
consider the temporal gene expression pattern due to an abrupt change in the
environment of the organism. As an example, the gene expression response was
measured of the cyanobacterium Synechocystis sp. PCC 6803 after to sudden
shift in the intensity of external light.3,4

Several methods have been proposed to infer gene interrelations from ex-
pression data. In cluster analysis,2,5,6 genes are grouped together based on
the similarity between their gene expression profiles. Inferring Boolean or



Bayesian networks from measured gene expression data has been proposed
previously,7,8,9,10,11 as well as modeling gene expression data using an arbitrary
system of differential equations.12 To reliably infer such an arbitrary system of
differential equations, however, a long series of time-ordered gene expression
data would be needed, which currently is often not yet available.

Instead, we will construct a linear system of differential equations from
gene expression data. This approach maintains the advantages of quantita-
tiveness and causality inherent in differential equations, while being simple
enough to be computationally tractable.

Previously, modeling biological data with linear differential equations was
considered theoretically by Chen.13 In this model, both the mRNA and the pro-
tein concentrations were described by a system of linear differential equations.
Such a system can be described as

d
dt

x (t) = Λ · x (t) , (1)

in which the vector x (t) contains the mRNA and protein concentrations as a
function of time, and the matrix Λ is constant with units of [second]−1. This
equation can be considered as a generalization of the Boolean network model,
in which the number of levels is infinite instead of binary.

In cDNA microarray experiments, usually only the gene expression levels
are determined by measuring the corresponding mRNA concentrations, while
the protein concentration is unknown. We therefore focus on a system of
differential equations describing gene interactions only. A matrix element Λij

then represents the effect of gene j on gene i, [Λij ]
−1 being the reaction time.

To infer the coefficients in the system of differential equations from mea-
sured data, it was previously suggested13 to discretize the system of differential
equations, substitute the measured mRNA and protein concentrations, and
solve the resulting linear system of equations to find the coefficients Λij in
the system of linear differential equations. The system of equations is usually
underdetermined. Using the additional requirement that the gene regulatory
network should be sparse, Chen showed that the model can be constructed
in O

(
mh+1

)
time, where m is the number of genes and h is the number of

nonzero coefficients allowed for each differential equation in the system.13

The parameter h is chosen ad hoc, which has two unexpected consequences.
As each row in the matrix Λ will have exactly h nonzero elements, every gene
or protein in the network has h parent genes or proteins, and consequently no
genes or proteins can exist at the top of a network. Secondly, every gene will
inevitably be a member of a feedback loop. While feedback loops are likely to
exist in gene regulatory networks, their existence should be determined from



the measured data instead of created artificially.
Bayesian networks, on the other hand, do not allow the existence of loops.

Bayesian networks rely on the joint probability distribution of the estimated
network to be decomposable in a product of conditional probability distribu-
tions. This decomposition is possible only in the absence of loops. We further
note that Bayesian networks tend to contain many parameters, and therefore
need a large amount of data for a reliable estimation.

We therefore aim to find a method that allows the existence of loops in
the network, but does not require their presence. Using Eq. 1, we construct a
sparse matrix by limiting the number of nonzero coefficients that may appear
in the system. Instead of choosing this number ad hoc, we estimate which
coefficients in the interaction matrix are zero from the data by using Akaike’s
Information Criterion (AIC), allowing the number of gene regulatory pathways
to be different for each gene.

Our method can be applied to find a network between individual genes, as
well as a regulatory network between clusters of genes. As an example, we infer
a gene regulatory network between clusters of genes using time course data of
Bacillus subtilis. Clusters are created using the k-means clustering algorithm.
The biological function of the clusters can be determined from the functional
categories of the genes belonging to each cluster.

2 Method

We consider a regulatory network between m genes in terms of a linear system
of differential equations (Eq. 1), where the vector x (t) contains the expression
ratios of the m genes at time t. This system of differential equations can be
solved as

x (t) = exp
(
Λt

) · x0 , (2)

in which x0 contains the gene expression ratios at time zero. In this equation,
the matrix exponential is defined in terms of a Taylor expansion as14

exp
(
A

) ≡
∞∑

i=0

1
i!

Ai . (3)

As Eq. 2 depends nonlinearly on Λ, it will be difficult to solve for Λ in
terms of the measured data x (t). An approximate solution can be found by
replacing the differential equation (Eq. 1) by a difference equation:

∆x

∆t
= Λ · x , (4)



or
x (t + ∆t)− x (t) = ∆t · Λ · x (t) , (5)

which is of the form considered by Chen.13 To be able to statistically determine
the sparseness of matrix Λ, we explicitly add an error ε (t), which will invariably
be present in the data:

x (t + ∆t)− x (t) = ∆t · Λ · x (t) + ε (t) . (6)

By using this equation, we effectively describe a gene regulatory network in
terms of a multidimensional linear Markov model.

We assume that the error has a normal distribution independent of time:

f
(
ε (t) ; σ2

)
=

(
1√

2πσ2

)m

exp

{
−ε (t)T · ε (t)

2σ2

}
, (7)

with a standard deviation σ equal for all genes at all times. The log-likelihood
function for a series of time-ordered measurements xi at times ti, i ∈ {1, . . . , n}
at n time points is then

L
(
Λ, σ2

)
= −nm

2
ln

[
2πσ2

]− 1
2σ2

n∑

i=1

ε̂T
i · ε̂i , (8)

in which
ε̂i = xi − xi−1 − (ti − ti−1) · Λ · xi−1 (9)

is the measurement error at time ti estimated from the measured data.
The maximum likelihood estimate of the variance σ2 can be found by

maximizing the log-likelihood function with respect to σ2. This yields

σ̂2 =
1

nm

n∑

i=1

ε̂T
i · ε̂i . (10)

Substituting this into the log-likelihood function (Eq. 8) yields

L
(
Λ, σ2 = σ̂2

)
= −nm

2
ln

[
2πσ̂2

]− nm

2
. (11)

To find the maximum likelihood estimate Λ̂ of the matrix Λ, we use Eq. 9 to
write the total squared error σ̂2 as

σ̂2 =
1

nm

n∑

i=1

[(
xT

i − xT
i−1

) · (xi − xi−1

)
+ (ti − ti−1)

2
xT

i−1 · ΛT · Λ · xi−1

−2
(
xT

i − (ti − ti−1)xT
i−1

) · Λ · xi−1

]
, (12)



and take the derivative with respect to Λ. We find a linear equation in Λ:

Λ̂ = B ·A−1, (13)

in which the matrices A and B are defined as

A ≡
n∑

i=1

[
(ti − ti−1)

2 · xi−1 · xT
i−1

]
; (14)

B ≡
n∑

i=1

[
(ti − ti−1) ·

(
xi − xi−1

) · xT
i−1

]
. (15)

In the absence of errors, the estimated matrix Λ̂ is equal to the true matrix
Λ. We know from biology that the gene regulatory network and therefore Λ is
sparse. However, all of the elements in the estimated matrix Λ̂ may be nonzero
due to the presence of noise, even if the corresponding elements in the true
matrix Λ are zero. We may decide to set a matrix element equal to zero if the
resulting increase in the total squared error, as given by Eq. 12, is small.

Formally, we would use Akaike’s Information Criterion15,16

AIC = −2 ·
[ log-likelihood of the

estimated model

]
+ 2 ·

[
number of estimated

parameters

]
(16)

to decide which matrix elements should be set equal to zero. The AIC avoids
overfitting of a model to data by comparing the total error in the estimated
model to the number of parameters that was used in the model. The model
with the lowest AIC is considered to be optimal. The AIC is based on infor-
mation theory and is widely used for statistical model identification, especially
for time series model fitting.17

We use a mask M to set matrix elements of Λ̂ equal to zero:

Λ̂
′
= M ◦ Λ̂, (17)

where ◦ denotes the Hadamard (element-wise) product,14 and the mask M is a
matrix whose elements are either one or zero. The corresponding total squared
error σ̂2 can be found by replacing Λ̂ by Λ̂

′
in Eq. 12. The total squared error,

given the mask M , can be minimized by solving the set of equations

if Mij = 1:
[
Λ̂
′ ·A

]
ij

= Bij ;

if Mij = 0: Λ̂′ij = 0; (18)



yielding the maximum likelihood estimate Λ̂
′
. In this equation, A and B are

determined from Eqs. 14 and 15 using the measured gene expression levels xi.
We then calculate the AIC corresponding to M by substituting the esti-

mated log-likelihood function from Eq. 11 into Eq. 16:

AIC = nm ln
[
2πσ̂2

]
+ nm + 2 ·

(
1 +

[
sum of the mask

elements Mij

])
, (19)

the estimated parameters being σ̂2 and the elements of the matrix Λ̂ that we
allow to be nonzero. From this equation, we see that while the squared error
decreases, the AIC may increase as the number of nonzero elements increases.
A gene regulatory network may now be inferred from gene expression data by
finding the mask M that yields the lowest value for the AIC.

For any but the most trivial cases, the number of possible masks M is ex-
tremely large, making an exhaustive search to find the optimal mask infeasible.
Instead, we propose a greedy search. Initially, we choose a mask at random,
with an equal probability of zero or one for each mask element. We attempt
to reduce the AIC by changing each of the mask elements Mij . This process is
continued until we find a final mask, for which no further reduction in the AIC
can be achieved. We repeat this algorithm many times starting from different
(random) initial masks, and choose the final mask M that has the smallest
corresponding AIC. If this optimal mask is found in several tens of trials, we
assume that no better masks exist.

3 Results

We will demonstrate our technique of finding a gene regulatory network using
gene expression data that were recently measured in an MMGE gene expres-
sion experiment of Bacillus subtilis.18 MMGE is a synthetic minimal medium
containing glucose and glutamine as carbon and nitrogen sources. In this
medium, the expression of genes required for biosynthesis of small molecules,
such as amino acids, is induced. The expression levels of 4320 ORFs were
measured at eight time points at one hour intervals in this experiment, making
two measurements at each time point.

3.1 Data preprocessing

To reduce the effect of measurement noise present in the data, the expression
levels of each gene were compared to the measured background level. Genes
with an average gene expression level lower than the average background level
in either the red or the green channel were removed from the analysis.



Global normalization was then applied to the 3823 remaining genes, and
the base-2 logarithms of the gene expression ratios were calculated. Since we
are only interested in genes with appreciably changing expression levels during
the experiment, we applied a statistical test to the measured log-ratios to
determine if they are significantly different from zero. Usually, the t-test would
be performed at every time point to determine which log-ratios are significantly
different from zero. However, a t-test would be unreliable in this experiment,
as there are only two measurements at each time point. We therefore devised
a statistical test incorporating the measurements at all eight time points.

Under the null hypothesis, we assume that a gene was not affected by the
experimental manipulation. The measured log-ratios at different time points
are then equivalent. We further assume that the log-ratios have a normal
distribution with zero mean. The standard deviation is then estimated from
all 8× 2 = 16 measurements:

σ̂j|H0 =

√√√√ 1
2n

n∑

i=1

∑

k=1,2

(xji [k])2, (20)

in which xji [k] denotes the data value of measurement k at time point i for
gene j. At each time point, we calculate the average log-ratio as

x̄ji =
1
2

∑

k=1,2

xji [k] . (21)

Under the null hypothesis, x̄j· (the average of two gene expression log-ratios at
a time point) is a random variable with a normal distribution with zero mean
and an estimated standard deviation σ̂j|H0 /

√
2. The joint probability for x̄j·

to be larger in absolute value than the measured values x̄ji is then

P =
n∏

i=1

Pi =
n∏

i=1

p (|x̄j·| > |x̄ji|)

=
n∏

i=1

[
1− erf

(
|x̄ji|

σ̂j|H0 /
√

2

)]
, (22)

in which erf is the error function. For a single factor Pi in this product, we
would normally choose a significance level α, and reject the null hypothesis
if Pi < α. Accordingly, we adopt the criterion that P < αn for rejection of
the null hypothesis. This allows us to determine whether the expression levels
of a gene change significantly during the experiment by making use of all the
available data for that gene.



We chose a significance level α = 0.00025 such that the expected number
of false positives (0.00025×3823 = 1) is acceptable. By applying this criterion
to the 3823 genes, we found that 684 genes were significantly affected.

3.2 Clustering

The 684 genes were subsequently clustered into five groups using k-means
clustering. The Euclidean distance was used to measure the distance between
genes, while the centroid of a cluster was defined by the median over all genes
in the cluster. The number of clusters was chosen such that a significant
overlap was avoided. The k-means algorithm was repeated 1,000,000 times
starting from different random initial clusterings. The optimal solution was
found 81 times. The full clustering result is available at http://bonsai.ims.u-
tokyo.ac.jp/∼mdehoon/publications/Subtilis/clusters.html.

In order to determine the biological function of the clusters that were
created, we considered the functional category in the SubtiList database19,20

for all genes in each cluster. Table 1 lists the main functional categories for
the five clusters that were formed.

Figure 1 shows the log-ratio of the gene expression as a function of time
for each cluster. While the expression levels of clusters I, II, and V change
considerably during the time course, clusters II and III have fairly constant
expression levels. Cluster IV in particular can be considered as a catchall
cluster, to which genes are assigned that do not fit well in the other clusters.

3.3 Network construction

From the measured log-ratios of those twelve genes, we constructed the ma-
trices A and B and calculated the matrix Λ̂. The process of calculating a
mask M , starting from a random initial mask, was repeated 1000 times. The
optimal solution was found 55 times. It is therefore unlikely that there are
other masks with a lower AIC. Note that the total number of possible masks
is 225 = 33, 554, 432.

The network that was found is shown in Figure 2. The number of parents
of a cluster in the network varies between zero and five. Clusters III and IV
appear as the top of the network, while clusters I, II, and V are connected
in a loop. Note that this network can neither be generated by the previously
proposed method,13 nor by a Bayesian network model.

The two strongest interactions in the network are the positive and negative
effect of cluster IV on cluster V and cluster II respectively. This suggests that
the opposite behavior of the gene expression levels of cluster II and V are
caused by cluster IV, instead of a direct interaction between clusters II and V.
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Figure 1: The log-ratio of the gene expression as a function of time for each cluster, as
determined from the measured gene expression data.
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Figure 2: The network between the five gene clusters, as determined from the MMGE time-
course data. The values show how strongly one gene cluster affects another gene cluster,

as given by the corresponding elements in the interaction matrix Λ̂
′
. In effect, this matrix

represents how rapidly gene expression levels respond to each other. As an example, a change
in the gene expression level of Cluster I would cause the expression level of Cluster V to
change considerably within 1/(5.0 hour−1) = 12 minutes, if the expression levels of Clusters
II, III, and IV are unchanged.



Table 1: The main functional categories for the five clusters created using k-means clustering.
The functional categories refer to the SubtiList database at Institut Pasteur.

Cluster Number of genes Main functional categories
I 42 2.2: 11 genes; 1.1: 9 genes
II 62 1.2: 15 genes; 2.2: 12 genes
III 187 5.1: 30 genes; 6.0: 23 genes; 1.2: 22 genes
IV 343 5.1: 40 genes; 5.2: 39 genes; 1.2: 33 genes
V 50 1.2: 15 genes; 2.1.1: 15 genes

Functional categories
1.1: Cell wall.
1.2: Transport/binding proteins and lipoproteins.

2.1.1: Metabolism of carbohydrates and related molecules
— Specific pathways.

2.2: Metabolism of amino acids and related molecules.
5.1: Similar to unknown proteins from Bacillus subtilis.
5.2: Similar to unknown proteins from other organisms.
6.0: No similarity.

4 Discussion

We have shown a method to infer a gene regulatory network in the form of
a linear system of differential equations from measured gene expression data.
Due to the limited number of time points at which measurements are typi-
cally made, finding a gene regulatory network is usually an underdetermined
problem. Since biologically the resulting gene regulatory network is expected
to be sparse, we set some of the matrix entries equal to zero, and infer a net-
work using only the nonzero entries. The number of nonzero entries, and thus
the sparseness of the network, was determined from the data using Akaike’s
Information Criterion without using any ad hoc parameters.

Describing a gene network in terms of differential equations has three ad-
vantages. First, the set of differential equations describes causal relations be-
tween genes: a coefficient Λij of the coefficient matrix determines the effect
of gene j on gene i. Second, it describes gene interactions in an explicitly
numerical form. Third, because of the large amount of information present in
a system of differential equations, other network forms can easily be derived
from it. In addition, we can link the inferred network to other analysis or
visualization tools, such as Genomic Object Net 22.

In previously described methods, either loops cannot be found (such as



in Bayesian network models) or the method artificially generates loops in the
network. While the method proposed here allows loops to be present in the
network, their existence is not required. Loops are found only if warranted
by the data. When inferring a regulatory network between gene clusters using
time-course data of Bacillus subtilis in an MMGE medium, we found that some
of the clusters were part of a loop, while others were not.

If the number of genes m is equal to or larger than the number of exper-
iments n, the matrix A in Eq. 18 is singular. The problem is then underde-
termined, and an interaction matrix Λ̂ can be found with zero total error σ̂2

and an AIC of −∞. This breakdown of our proposed method can be avoided
by applying it to a sufficiently small number of genes or gene clusters, or by
limiting the number of parents in the network.
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