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Abstract. We propose a dynamic Bayesian network and nonparamet-
ric regression model for constructing a gene network from time series
microarray gene expression data. The proposed method can overcome
a shortcoming of the Bayesian network model in the sense of the con-
struction of cyclic regulations. The proposed method can analyze the
microarray data as continuous data and can capture even nonlinear rela-
tions among genes. It can be expected that this model will give a deeper
insight into the complicated biological systems. We also derive a new
criterion for evaluating an estimated network from Bayes approach. We
demonstrate the effectiveness of our method by analyzing Saccharomyces
cerevisiae gene expression data.

1 Introduction

The development of microarray technology provides us a huge amount of gene
expression data and a new perspective of the analysis of whole genome mecha-
nism. The estimation of a gene network from cDNA microarray gene expression
data becomes one of the important topics in the field of bioinformatics and can
be viewed as the first step of systems biology.

Using the Bayesian network model (Friedman et al. [13]; Imoto et al. [14,
15]; Pe’er et al. [19]) for estimating a gene network from cDNA microarray gene
expression data has received considerable attention and many successful inves-
tigations have been reported. However, a shortcoming of the Bayesian network
model is that this model cannot construct cyclic networks, while a real gene
regulation mechanism has cyclic regulations. Recently, the dynamic Bayesian
network model (Bilmes et al. [3]; Friedman et al. [12]; Murphy and Mian [18];
Someren et al. [21]) has been proposed for constructing a gene network with
cyclic regulations. The dynamic Bayesian network is based on time series data,
and usually the data has to be discretized into the several classes. Therefore,
the resulting network of the dynamic Bayesian network model depends strongly
on the thresholds that are chosen for the discretization. Unfortunately, the dis-
cretization leads to information loss. Rangel et al. [20] used the state space
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model for constructing a gene network. Their method is based on linear models.
However, there is no guarantee that the relationship between genes is linear.
Imoto et al. [14, 15] proposed a network estimation method based on a Bayesian
network and nonparametric regression to avoid discretization and for capturing
nonlinear relations among genes. However, the Bayesian network and nonpara-
metric regression model [14, 15] still has a remaining problem to be solved in the
construction of cyclic regulations.

In this paper, we extend the Bayesian network and nonparametric regres-
sion model to the dynamic Bayesian network model, which can construct cyclic
regulations when we have a time series gene expression data. We can include
the time delay information into the proposed model naturally. The model can
extract even nonlinear relations among genes automatically. For constructing a
gene network with cyclic regulations based on time series gene expression data,
an ordinal differential equation model (Chen et al. [5]; De Hoon et al. [8]) is an
alternative method. However, this model is based on a linear system and proba-
bly unsuitable for capturing complex phenomena. We derive a new criterion for
choosing an optimal network from the Bayesian statistical point of view [2]. The
proposed criterion can optimize the network structure such that it gives the best
representation of the gene interactions described by the data with noise. The ef-
ficiency of the proposed method is shown by analyzing Saccharomyces cerevisiae
gene expression data.

2 Dynamic Bayesian Network and Nonparametric
Regression

Suppose that we have an n × p microarray gene expression data matrix X,
where n and p are the numbers of microarrays and genes, respectively. Usually,
the number of genes p is much larger than the number of microarrays, n. In the
estimation of a gene network based on the Bayesian network, a gene is considered
to be a random variable. When we model a gene network by using statistical
models described by the density or probability function, the statistical model
should include p random variables. However, we have only n samples and n is
usually much smaller than p. In such case, the inference of the model is quite
difficult or impossible, because the model has many parameters and the number
of samples is not enough for estimating the parameters. The Bayesian network
model has been advocated in such situations.

In the context of the dynamic Bayesian network, we consider time series data,
with the ith row vector xi of X corresponds to the states of p genes at time i. As
for the time dependency, we consider the first order Markov relation described
in Figure 1. Under this condition, the joint probability can be decomposed as

P (X11, ..., Xnp) = P (X1)P (X2|X1)× · · · × P (Xn|Xn−1), (1)

where Xi = (Xi1, ..., Xip)T is a random variable vector of p genes at time i. The
conditional probability P (Xi|Xi−1) can also be decomposed into the product
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X 1 X 2 X n
......

Fig. 1. Time dynamics. Xi is the states of the genes at time i for i = 1, ..., n.

of conditional probabilities of the form

P (Xi|Xi−1) = P (Xi1|P i−1,1)× · · · × P (Xip|P i−1,p), (2)

where P i−1,j is the state vector of the parent genes of jth gene at time i − 1.
The equations (1) and (2) hold when we use the density function instead of
the probability measure. Hence, the dynamic Bayesian network can then be
represented by using densities as follows:

f(x11, ..., xnp) = f1(x1)f2(x2|x1)× · · · × fn(xn|xn−1)

= f1(x1)
n∏

i=2

g1(xi1|pi−1,1)× · · · × gp(xip|pi−1,p)

= f1(x1)
p∏

j=1

{
n∏

i=2

gj(xij |pi−1,j)

}
,

where pi−1,j = (p(j)
i−1,1, ..., p

(j)
i−1,qj

)T is a qj-dimensional observation vector of
parent genes. The decomposition is given by equation (2)

fi(xi|xi−1) = g1(xi1|pi−1,1)× · · · × gp(xip|pi−1,p).

For modeling the relationship between xij and pi−1,j , we use the nonpara-
metric additive regression model as follows:

xij = mj1(p
(j)
i−1,1) + · · ·+ mjqj (p

(j)
i−1,qj

) + εij ,

where εij depends independently and normally on mean 0 and variance σ2
j . Here,

mjk(·) is a smooth function from R to R and can be expressed by using a linear
combination of basis functions

mjk(p(j)
i−1,k) =

Mjk∑
m=1

γ
(j)
mkb

(j)
mk(p(j)

i−1,k), k = 1, . . . , qj ,

where γ
(j)
1k , ..., γ

(j)
Mjkk are unknown coefficient parameters and {b(j)

1k (·), ..., b(j)
Mjkk(·)}

is the prescribed set of basis functions. Then we define a dynamic Bayesian net-
work and nonparametric regression model of the form

f(x11, ..., xnp; θG)

= f1(x1)
p∏

j=1




n∏

i=2

1√
2πσ2

j

exp

{
− (xij − µ(pi−1,j))2

2σ2
j

}
 ,
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where θG is the parameter vector included in the Bayesian network model and
µ(pi−1,j) = mj1(p

(j)
i−1,1)+· · ·+mjqj (p

(j)
i−1,qj

). When jth gene has no parent genes,
µ(pi−1,j) reduces to the constant µj .

We assume f1(x1) = g1(x11)×· · ·×g1(x1p) and the joint density f(x11, ..., xnp;
θG) can then be rewritten as

f(x11, ..., xnp; θG) =
p∏

j=1


g1(x1j)

n∏

i=2

1√
2πσ2

j

exp

{
− (xij − µ(pi−1,j))2

2σ2
j

}


=
p∏

j=1

n∏

i=1

gj(xij |pi−1,j ;θj), (3)

where p0j = ∅. Thus, gj(xij |pi−1,j ; θj) represents the local structure of jth gene
and its parent genes.

3 Derivation of a Criterion for Selecting Network

The dynamic Bayesian network and nonparametric regression model introduced
in the previous section can be constructed when we fix the network structure.
However, the gene network is generally unknown and we should estimate an op-
timal network based on the data. This problem can be viewed as a statistical
model selection problem (see e.g., Akaike [1]; Burnham and Anderson [4]; Kon-
ishi [16]; Konishi and Kitagawa [17]). We solve this problem from the Bayesian
statistical approach and derive a criterion for evaluating the goodness of the
dynamic Bayesian network and nonparametric regression model.

Let π(θG|λ) be a prior distribution on the parameter θG in the dynamic
Bayesian network and nonparametric regression model and let log π(θG|λ) =
O(n). The marginal likelihood can be represented as

∫
f(x11, ..., xnp;θG)π(θG|λ)dθG.

Thus, when the data is given, the posterior probability of the network G is

πpost(G|X) =
πprior(G)

∫
f(x11, ..., xnp; θG)π(θG|λ)dθG

∑
G

{
πprior(G)

∫
f(x11, ..., xnp;θG)π(θG|λ)dθG

} , (4)

where πprior(G) is the prior probability of the network G. The denominator of
(4) does not relate to model evaluation. Therefore, the evaluation of the net-
work depends on the magnitude of numerator. Hence, we can choose an optimal
network as the maximizer of

πprior(G)
∫

f(x11, ..., xnp; θG)π(θG|λ)dθG.
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It is clear that the essential point for constructing a network selection criterion
is how to compute the high dimensional integral. Imoto et al. [14, 15] used the
Laplace approximation for integrals (see also Tinerey and Kadane [23]; Davi-
son [6]). This technique can be applied to the dynamic Bayesian network and
nonparametric regression model directly. Hence, we have a criterion, named
BNRCdynamic, of the form

BNRCdynamic(G)

= −2 log
{

πprior(G)
∫

f(x11, ..., xnp;θG)π(θG|λ)dθG

}

≈ −2 log πprior(G)− r log(2π/n) + log |Jλ(θ̂G)| − 2nlλ(θ̂G|X), (5)

where r is the dimension of θG,

lλ(θG|X) = log f(x11, ..., xnp;θG)/n + log π(θG|λ)/n,

Jλ(θG) = −∂2{lλ(θG|X)}/∂θG∂θT
G

and θ̂G is the mode of lλ(θG|X). The optimal graph is chosen such that the
criterion BNRCdynamic (5) is minimal.

4 Estimation of a Gene Network

In this section, we show the concrete strategy for estimating a gene network from
cDNA microarray time series gene expression data.

4.1 Nonparametric Regression

We use the basis function approach for constructing the smooth function mjk(·)
described in Section 2. In this paper we use B-splines [7] as the basis functions.
De Boor’s algorithm (see, de Boor [7], Chapter 10, p.130 (3)) is a useful method
for computing B-splines of any degree. We use 20 B-splines of degree 3 with
equidistant knots (see also, Dierckx [10]; Eiler and Marx [11] for the details of
B-spline).

4.2 Prior Distribution on the Parameter

For the prior distribution on the parameter θG, suppose that the parameter
vectors θj are independent of one another. The prior distribution can then be
decomposed as π(θG|λ) =

∏p
j=1 πj(θj |λj). Suppose that the prior distribution

πj(θj |λj) is factorized as πj(θj |λj) =
∏qj

k=1 πjk(γjk|λjk), where λjk are hyper
parameters. We use a singular Mjk variate normal distribution as the prior
distribution on γjk,

πjk(γjk|λjk) =
(

2π

nλjk

)−(Mjk−2)/2

|Kjk|1/2
+ exp

(
−nλjk

2
γT

jkKjkγjk

)
,
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where Kjk is an Mjk × Mjk symmetric positive semidefinite matrix satisfying
γT

jkKjkγjk =
∑Mjk

α=3(γ
(j)
αk − 2γ

(j)
α−1,k + γ

(j)
α−2,k)2. This setting of the prior distri-

bution on θG is the same as Imoto et al. [14, 15].

4.3 Proposed Criterion

By using the prior distributions in Section 4.2, the BNRCdynamic can be decom-
posed as follows:

BNRCdynamic =
p∑

j=1

BNRC(j)
dynamic, (6)

where BNRC(j)
dynamic is a local criterion score of jth gene and is defined by

BNRC(j)
dynamic

= −2 log

{∫
πprior(Lj)

n∏

i=1

gj(xij |pi−1,j ;θj)πj(θj |λj)dθj

}

≈ −2 log πprior(Lj)− rj log(2π/n) + log |J (j)
λj

(θ̂j)| − 2nl
(j)
λj

(θ̂j |X),

where rj is the dimension of θj ,

l
(j)
λj

(θ̂j |X) =
n∑

i=1

log gj(xij |pi−1,j ; θj)/n + log π(θj |λj)/n,

J
(j)
λj

(θ̂j) = −∂2{l(j)λj
(θ̂j |X)}/∂θj∂θT

j

and θ̂j is the mode of l
(j)
λj

(θj |X). Here πprior(Lj) are prior probabilities satis-
fying

∑p
j=1 log πprior(Lj) = log πprior(G). We set the prior probability of local

structure πprior(Lj) as πprior(Lj) = exp{−(The number of parent genes ofthe j
th gene)}.

4.4 Algorithm for Learning Network

By using the dynamic Bayesian network and nonparametric regression model to-
gether with the proposed criterion, BNRCdynamic, we can formulate the network
learning process as follows: it is clear from (3) and (6) that the optimization of
network structure is equivalent to choosing the parent genes that regulate the
target genes. However, it is a time-consuming task to consider all possible gene
combinations as the parent genes. Therefore, we reduce the learning space by se-
lecting candidate parent genes. After this step, a greedy hill-climbing algorithm is
employed for finding better networks. Our algorithm can be expressed as follows:
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(a)Target pathway (b)Result of the proposed method

Fig. 2. Cell cycle pathway compiled in KEGG.

Step1: Preprocessing stage
We make the p× p matrix whose (i, j)th element is the BNRC(j)

dynamic score
of the graph “genei → genej” and we define the candidate set of parent genes
of genej that gives small BNRC(j)

dynamic scores.

Step 2: Learning stage
For a greedy hill-climbing algorithm, we start form the empty network and

repeat the following steps:

Step2-1: For genej , implement one from two procedures that add a parent gene
or delete a parent gene, which gives smaller BNRC(j)

dynamic score.
Step2-2: Repeat Step2-1 until we find the best set of parent genes of jth gene.
Step2-3: Repeat Step2-1 and 2-2 for all genes.
Step2-4: We choose the optimal network that gives the smallest BNRCdyanmic

score.

5 Computational Experiment

We demonstrate our proposed method through the analysis of the Saccharomyces
cerevisiae cell cycle gene expression data collected by Spellman et al. [22]. This
data contains two short time series (two time points; cln3, clb2) and four medium
time series (18, 24, 17 and 14 time points; alpha, cdc15, cdc28 and elu). In the
estimation of a gene network, we use four medium time series. For combining
four time series, we ignore the first observation of the target gene and last one of
the parent genes for each time series when we fit the nonparametric regression
model. We set the number of the candidate parent genes to 10, since the resulting
network did not change while using a larger set of candidate parents.
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(c)Result of the proposed method

Fig. 3. Metabolic pathway reported by DeRisi et al. [9].

At first, we focus on the cell cycle pathway stored in the KEGG database
[24]. The target network is around CDC28 (YBR160w; cyclin-dependent pro-
tein kinase). This network contains 45 genes. The partial pathway registered
in KEGG is shown in Figure 2 (a) and the estimated network is in Figure 2
(b). The edges in the dotted circles can be considered as the correct edges. We
can model some correct relations by using the proposed method. We denote the
correct estimation by a circle next to the edge. A triangle represents the edge in-
correctly directed or the edge which bypassed one gene, while a cross represents
an estimated edge that is not present in the target graph.

Our second example is the metabolic pathway reported by DeRisi et al. [9].
This network contains 57 genes and the target pathway is partially shown in
Figure 3 (a). We apply the Bayesian network and nonparametric regression
model [14, 15] to these data. The resulting network is shown in Figure 3 (b).
The network of Figure 3 (c) is obtained by the dynamic Bayesian network and
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nonparametric regression model. It is difficult to estimate the metabolic path-
way from cDNA microarray data. However, our model can detect some correct
relations. Comparing with the Bayesian network and nonparametric regression,
the number of false positives of the proposed method in Figure 3 (c) is much
smaller than those in Figure 3 (b).

We observed that the Bayesian network and nonparametric regression can
work well in many cases. However, when there is a cyclic gene regulation, the
Bayesian network and nonparametric regression model tends to estimate many
false positives in the cyclic regulation. In such case, the proposed method can
reduce the number of false positives and estimate gene regulations effectively.

6 Discussion

In this paper, we proposed a new statistical gene network estimation method
based on the dynamic Bayesian network and nonparametric regression model.
Our proposed method has several advantages compared with other network esti-
mation method such as the Bayesian and Boolean networks. First, our model can
take time information into account naturally. Second, our model can analyze the
microarray data as the continuous data without additional data pretreatments
such as discretization. Last, even nonlinear relations can be detected and mod-
eled by our proposed method.

Simulating a genetic system is one of the central topics in systems biology.
Since the simulation is based on biological knowledge, our network estimation
method can support the biological simulation by constructing the unknown reg-
ulations. In this paper, we only demonstrate the model based on the first-order
Markov relation between time points described in Figure 1. However, the rela-
tionship between time points is arbitrary and we can choose the time dependency
structure based on our proposed criterion. We would like to discuss this topic in
our future work.
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