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Dynamic Bayesian network and nonparametric regression
for nonlinear modeling of gene networks from time

series gene expression data
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Abstract

We propose a dynamic Bayesian network and nonparametric regression model for constructing a gene network from time
series microarray gene expression data. The proposed method can overcome a shortcoming of the Bayesian network model in the
sense of the construction of cyclic regulations. The proposed method can analyze the microarray data as a continuous data and
can capture even nonlinear relations among genes. It can be expected that this model will give a deeper insight into complicated
biological systems. We also derive a new criterion for evaluating an estimated network from Bayes approach. We conduct Monte
Carlo experiments to examine the effectiviness of the proposed method. We also demonstrate the proposed method through the
analysis of theSaccharomyces cerevisiae gene expression data.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

The development of microarray technology pro-
vides us a huge amount of gene expression data and
a new perspective of the analysis of whole genome
mechanism. The estimation of a gene network from
cDNA microarray gene expression data becomes one
of the important topics in the field of bioinformatics
and can be viewed as the first step of systems biology.

The use of the Bayesian network model(Friedman
et al., 2000; Imoto et al., 2002a,b; Pe’er et al., 2001)
for estimating a gene network from cDNA microarray
gene expression data has received considerable atten-
tion and many successful investigations have been re-
ported. However, a shortcoming of the Bayesian net-
work model is that this model cannot construct cyclic
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networks, while a real gene regulation mechanism has
cyclic regulations. Recently, the dynamic Bayesian
network model(Bilmes, 2000; Friedman et al., 1998;
Ong et al., 2002; Someren et al., 2002)has been pro-
posed for constructing a gene network with cyclic reg-
ulations. The dynamic Bayesian network is based on
time series data. Usually the data is discretized into
several classes. Therefore, the resulting network of the
dynamic Bayesian network model depends strongly
on the setting of the thresholds for discretization, and,
unfortunately, the discretization leads to information
loss.Imoto et al. (2002a,b)proposed the network es-
timation method based on the Bayesian network and
the nonparametric regression for a solution to avoid
the discretization and for capturing nonlinear relations
among genes.

In this paper, we extend the Bayesian network
and nonparametric regression model to the dynamic
Bayesian network model, which can construct cyclic
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regulations when we have time series gene expression
data. We can include the information of time delay
into the proposed model naturally and the model can
extract even nonlinear relations among genes auto-
matically. For constructing a gene network with cyclic
regulations based on time series gene expression data,
an ordinary differential equation model(Chen et al.,
1999; De Hoon et al., 2003)is an alternative method.
However, most implementations using this model are
based only on linear systems. They are probably un-
suitable for capturing complex phenomena. We derive
a new criterion for choosing an optimal network from
the Bayesian statistical point of view (seeBerger,
1985). The proposed criterion can optimize the net-
work structure, which gives the best representation of
the gene interactions described by the data with noise.
The efficiency of the proposed method are shown
through the analysis of theSaccharomyces cerevisiae
gene expression data.

2. Dynamic Bayesian network and nonparametric
regression

Let X be n × p microarray gene expression data
matrix, wheren andp are the numbers of microarrays
and genes, respectively. In the context of Bayesian
networks, a gene is considered as a random variable.
When we model a gene network by using statistical
models described by the density or probability func-
tion, the statistical model should includep random
variables. However, we have onlyn samples andn is
usually much smaller thanp. In such case, the infer-
ence of the model is quite difficult or sometimes im-
possible, because the model has many parameters and
the number of samples is not enough for estimating
the parameters. A Bayesian network model has been
advocated in such modeling.

While Bayesian networks are very effective for an-
alyzing microarray data, they stand only when there
are no cyclic dependencies. Dynamic Bayesian net-
works overcome this problem (seeFig. 1). In the con-
text of the dynamic Bayesian networks, we consider
the time series data and theith row vectorxi of X

corresponds to the states ofp genes at timei. As
for the time dependency, we consider the first order
Markov relation described inFig. 2. Under this con-
dition, the joint probability can be decomposed as

Fig. 1. Example of a network containing a cyclic regulation. The
network (left) contains a cycleX1 → X2 → X4 → X5 → X1.
A Bayesian network model cannot treat such a network. On the
other hand, the dynamic Bayesian network can construct a cyclic
regulation by dividing states of a gene by time points (right).

follows:

P(X11, . . . , Xnp)= P(X1)P(X2|X1)× · · ·
×P(Xn|Xn−1), (1)

where Xi = (Xi1, . . . , Xip)
T is a random variable

vector ofp genes at timei.
For each time slice, we construct a network repre-

senting gene regulations. As is shown inFig. 2, we
assume the network structure is stable through all time
points. Taking these gene regulations, the conditional
probabilityP(Xi|Xi−1) can also be decomposed into
the product of conditional probabilities of each gene
given its parent genes, of the form

P(Xi|Xi−1) = P(Xi1|P i−1,1)× · · · × P(Xip|P i−1,p),

(2)

whereP i−1,j is the state vector of the parent genes of
jth gene at timei− 1.

The Eqs. (1) and (2)hold when we use the den-
sity function instead of the probability measure. From
Eq. (1), we have

f(x11, . . . , xnp)= f1(x1)f2(x2|x1)× · · ·
× fn(xn|xn−1). (3)

Suppose thatpi−1,j = (p
(j)

i−1,1, . . . , p
(j)

i−1,qj
)T is a

qj-dimensional observation vector of parent genes of
jth gene at timei− 1. TheEq. (2)can be rewritten as

fi(xi|xi−1) = g1(xi1|pi−1,1)× · · · × gp(xip|pi−1,p).

(4)
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Fig. 2. Graphical view of a dynamic Bayesian network model.

By substituting (4) into (3), we have a dynamic
Bayesian network model described by densities

f(x11, . . . , xnp)

= f1(x1)f2(x2|x1)× · · · × fn(xn|xn−1)

= f1(x1)

n∏
i=2

g1(xi1|pi−1,1) · · · gp(xip|pi−1,p)

= f1(x1)

p∏
j=1

{
n∏
i=2

gj(xij|pi−1,j)

}
.

Hence, a crucial problem for modeling a gene net-
work based on the dynamic Bayesian network is how
to construct the conditional densitiesgj(xij|pi−1,j). To
construct this density function, we assume a nonpara-
metric additive regression model with Gaussian noise,

xij = mj1(p
(j)

i−1,1)+ · · · +mjqj (p
(j)

i−1,qj
)+ εij,

where εij depends independently and normally on
mean 0 and varianceσ2

j . That is, gj(xij|pi−1,j) is
a density of Gaussian distribution. Heremjk(·) is a
smooth function fromR to R and can be expressed
by using the linear combination of basis functions

mjk(p
(j)

i−1,k) =
Mjk∑
m=1

γ
(j)

mkb
(j)

mk(p
(j)

i−1,k), k = 1, . . . , qj,

whereγ(j)1k , . . . , γ
(j)

Mjkk
are coefficient parameters and

{b(j)1k (·), . . . , b(j)Mjkk
(·)} is the prescribed set of basis

functions. Then we define a dynamic Bayesian net-
work and nonparametric regression model of the form

f(x11, . . . , xnp; θG) = f1(x1)

×
p∏
j=1


 n∏
i=2

1√
2πσ2

j

exp

{
− (xij − µ(pi−1,j))

2

2σ2
j

}
 ,

whereθG is the parameter vector included in the model
andµ(pi−1,j) = mj1(p

(j)

i−1,1) + · · · + mjqj (p
(j)

i−1,qj
).

Whenjth gene has no parent genes,µ(pi−1,j) is re-
sulted in the constantµj.

We assumef1(x1) = g1(x11)×· · ·×g1(x1p) and the
joint densityf(x11, . . . , xnp; θG) can then be rewritten
as

f(x11, . . . , xnp; θG)

=
p∏
j=1

{
g1(x1j)

n∏
i=2

gj(xij|pi−1,j; θj)

}

=
p∏
j=1

n∏
i=1

gj(xij|pi−1,j; θj), (5)

wherep0j = ∅. Thus,gj(xij|pi−1,j; θj) represents the
local structure ofjth gene and its parent genes.



60 S. Kim et al. / BioSystems 75 (2004) 57–65

3. Derivation of a criterion for selecting networks

The dynamic Bayesian network and nonparametric
regression model introduced in the previous section
can be constructed when we fix the network structure
and can be estimated by a suitable procedure. How-
ever, gene networks are generally unknown and we
should estimate optimal networks based on the data.
This problem can be viewed as a statistical model
selection problem (see e.g.,Akaike, 1973; Burnham
and Anderson, 1998; Konishi, 1999; Konishi and
Kitagawa, 1996). We solve this problem from the
Bayesian statistical approach and derive a criterion
for evaluating the goodness of the dynamic Bayesian
network and nonparametric regression model.

Here we focus on a posterior probability of a net-
work G since the optimal network is considered to
maximize it. Letπ(θG|λ) be a prior distribution on the
parameterθG in the dynamic Bayesian network and
nonparametric regression model and let logπ(θG|λ) =
O(n). The marginal likelihood can be represented as∫
f(x11, . . . , xnp; θG)π(θG|λ)dθG.

Thus, when the data is given, the posterior probability
of the networkG is

πpost(G|X)

= π(G)
∫
f(x11, . . . , xnp; θG)π(θG|λ)dθG∑

G

{
π(G)

∫
f(x11, . . . , xnp; θG)π(θG|λ)dθG

} ,
(6)

whereπ(G) is the prior probability of the network
G. The denominator of(6) does not relate to model
evaluation. Therefore, the evaluation of the network
depends on the magnitude of numerator. Hence, we
can choose an optimal network as the maximizer of

π(G)

∫
f(x11, . . . , xnp; θG)π(θG|λ)dθG.

It is clear that the essential point for constructing a
network selection criterion is how to compute the
high dimensional integral.Imoto et al. (2002a,b)
used the Laplace approximation for integrals (see
alsoKonishi et al., 2004; Tinerey and Kadane, 1986;
Davison, 1986) and we can apply this technique to
the dynamic Bayesian network and nonparametric

regression model directly. Hence, we have a criterion,
named BNRCdynamic, of the form

BNRCdynamic(G) =

−2 log

{
π(G)

∫
f(x11, . . . , xnp; θG)π(θG|λ)dθG

}
(7)

≈ −2 logπ(G)− r log

(
2π

n

)

+ log|Jλ(θ̂G)| − 2nlλ(θ̂G|X), (8)

wherer is the dimension ofθG,

lλ(θG|X)=logf(x11, . . . , xnp; θ)/n+ logπ(θG|λ)/n,

Jλ(θG) = −∂
2{lλ(θG|X)}
∂θG∂θ

T
G

and θ̂G is the mode oflλ(θG|X). The optimal graph
is chosen such that the criterion BNRCdynamic (8) is
minimal.

4. Estimation of gene networks

In this section, we show the concrete strategy for es-
timating a gene network from cDNA microarray time
series gene expression data.

4.1. Nonparametric regression

use the basis function approach for constructing
the smooth functionmjk(·) described inSection 2.
In this paper we useB-splines (seeDe Boor, 1978)
as the basis functions. De Boor’s algorithm (see,De
Boor, 1978, Chapter 10, p. 130 (3)) is a useful method
for computingB-splines of any degree. We use 20
B-splines of degree 3 with equidistance knots (see
also, Imoto and Konishi, 2003; Dierckx, 1993; Eiler
and Marx, 1996for the details ofB-spline). Fig. 3
shows an example of aB-spline smoothed estimate.
We consider a graph gene1 → gene2 and estimate a
functional structure represented by a thin curve based
on our method.
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Fig. 3. Fitting aB-spline curve (thick curve) to simulated data.
Thin curves are weightedB-splines. The thick curve is obtained
by summing these weightedB-splines.

4.2. Prior distribution on the parameter

For the prior distribution on the parameterθG, sup-
pose that the parameter vectorsθj are independent one
another, the prior distribution can then be decomposed
asπ(θG|λ) = ∏p

j=1πj(θj|λj). Suppose that the prior
distribution πj(θj|λj) is factorized asπj(θj|λj) =∏qj
k=1πjk(γ jk|λjk),whereλjk are hyper parameters. We

use a singularMjk variate normal distribution as the
prior distribution onγ jk,

πjk(γ jk|λjk)=
(

2π

nλjk

)−(Mjk−2)/2

|Kjk|1/2+

× exp

(
−nλjk

2
γT

jkKjkγ jk

)
,

where Kjk is an Mjk × Mjk symmetric posi-
tive semidefinite matrix satisfyingγT

jkKjkγ jk =∑Mjk
α=3(γ

(j)

αk − 2γ(j)α−1,k + γ
(j)

α−2,k)
2. This setting of the

prior distribution onθG is the same asImoto et al.
(2002a,b)and the details are in those papers.

4.3. Proposed criterion

By using the prior distributions inSection 4.1, the
BNRCdynamic can be decomposed as follows:

BNRCdynamic=
p∑
j=1

BNRC(j)dynamic, (9)

where BNRC(j)dynamic is a local criterion score ofjth
gene. This decomposition enables us to avoid the
complexity of estimating thep-dimensional function.
BNRC(j)dynamic is defined by

BNRC(j)dynamic=

−2 log

{∫
π(j)

n∏
i=1

gj(xij|pi−1,j; θj)πj(θj|λj)dθj
}

≈ −2 logπ(j) − rj log

(
2π

n

)

+ log|J(j)λj (θ̂j)| − 2nl(j)λj (θ̂j|X),
whererj is the dimension ofθj,

l
(j)

λj
(θ̂j|X) =

n∑
i=1

loggj(xij|pi−1,j; θj)/n+ logπ(θj|λj)/n,

J
(j)
λj
(θ̂j) = −

∂2{l(j)λj (θ̂j|X)}
∂θj∂θ

T
j

and θ̂j is the mode ofl(j)λj (θj|X). Hereπ(j) are prior
probabilities satisfying

p∑
j=1

logπ(j) = logπ(G).

We set the prior probability of local structureπ(j) as

π(j) = exp{−#(parent genes ofjth gene)}.

4.4. Algorithm for learning network

By using the dynamic Bayesian network and non-
parametric regression model together with the pro-
posed criterion, BNRCdynamic, we can formulate the
network learning process as follows: it is clear from
(5) and(9) that the optimization of network structure is
equivalent to the choices of the parent genes that regu-
late the target genes. However, it is a time-consuming
task when we consider all possible gene combinations
as the parent genes. Therefore, we cut down the learn-
ing space by selecting candidate parent genes. After
this step, a greedy hill-climbing algorithm is employed
for finding better networks. Our algorithm can be ex-
pressed as follows:
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Step 1 (Preprocessing stage). We make thep×pma-
trix whose(i, j)th element is the BNRC(j)dynamic score
of the graph “genei → genej” and we define the can-
didate set of parent genes of genej that gives small

BNRC(j)dynamic scores.

Step 2 (Learning stage). For a greedy hill-climbing
algorithm, we start form the empty network and repeat
the following steps:

Step 2.1: For genej, implement one from two pro-
cedures thatadd a parent gene,delete a parent
gene, which gives smaller BNRC(j)dynamic score.

Step 2.2: Repeat Step 2.1 until we find the best set
of parent genes ofjth gene.

Step 2.3: Repeat Step 2.1 and 2.2 for all genes.
Step 2.4: We choose the optimal network that gives

the smallest BNRCdyanmic score.

5. Computational experiment

5.1. Monte Carlo simulation

Before analyzing real gene expression data, we
conduct Monte Carlo simulations to examine the
properties of our method. We set an artificial network
shown in Fig. 4(a) and suppose functional relation-
ships between nodes inFig. 4(b). The noiseεi,j are
independently and normally distributed with mean 0
and standard deviations for εi,1, εi,2, εi,3, εi,6, εi,9 and

Fig. 4. Monte Carlo simulation. (a) Target network, (b) functional structure.

Table 1
Result of Monte Carlo simulations

s = 8 s = 12 s = 16 s = 20

(a) Sensitivity 0.996 0.971 0.925 0.877
(b) Specificity 0.697 0.782 0.829 0.851

εi,10, 2s for εi,4, εi,5 andεi,7 ands/2 for εi,8, respec-
tively. As for generating the data, we setx1,1 = 0 as
a start point and generate 150 observations for each
variable. After generating the data, we remove first
50 observations and use remained 100 observations
(i.e. i = 51, . . . ,150) for estimating a network. We
sets to 8, 12, 16, 20 and generated 1000 datasets for
each case. We observed that whens is set to 12, the
data seems to be closest to the real microarray data.

Table 1shows “sensitivity” and “specificity” of our
method under each setting. Here sensitivity and speci-
ficity are defined as follows:

sensitivity= #correctly estimated edges

#all edges in the target network
,

specificity= #correctly estimated edges

#all estimated edges
.

It may seem somewhat strange that the results of the
data with large noise indicates high specificity. We
presume the reason is that when the volume of system
noise is small, most variables seem to be related each
other. Therefore, the number of false positives for the
data with large noise is relatively smaller than those
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Fig. 5. Result of the Monte Carlo simulations (s = 12). (a) The
number of correctly estimated edges, (b) the number of wrongly
estimated edges.

for the data with small noise. Note that the resulting
network of the data with small noise contains more
true positives than that of the data with large noise.

Fig. 5shows a result of our simulations fors = 12.
Each number next to an edge indicates how often the
edge appeared in the resulting 1000 networks.Fig. 5(b)
is the list of false positives. Edges that are estimated
less than 10 times are ignored. We succeeded in con-
structing a cyclic regulationX1 → X2 → X3 →
X5 → X1 in 966 networks. Most false positive edges

Fig. 6. Cell cycle pathway compiled in KEGG. (a) Target pathway (b) Result of the Bayesian network (c) Result of the proposed method.

exist aroundX8, because the function betweenX7 and
X8 is somewhat complex and indifferentiable atX7 =
0. Also, our method assumes the relationship between
genes is smooth. However our method estimated this
relation 571 times in 1000 networks. We observe that
our method works well when the true network con-
tains even cyclic regulations and nonlinear complex
dependencies.

5.2. Real data application

We demonstrate our proposed method through the
analysis of theS. cerevisiae cell cycle gene expression
data collected bySpellman et al. (1998). We also apply
the Bayesian network and nonparametric regression
model(Imoto et al., 2002a,b)and compare the results.
This data contains two short time series (two time
points; cln3, clb2) and four medium time series (18,
24, 17 and 14 time points; alpha, cdc15, cdc28 and
elu). In the estimation of a gene network, we use four
medium time series. For combining four time series,
we ignore the first observation of the target gene and
last one of parent genes for each time series when we
fit the nonparametric regression model.

At first, we focus on the cell cycle pathway com-
piled in KEGG database (http://www.genome.ad.jp/
kegg/). The target network is around CDC28
(YBR160w; cyclin-dependent protein kinase). This

http://www.genome.ad.jp/kegg/
http://www.genome.ad.jp/kegg/
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Fig. 7. Metabolic pathway reported byDeRisi et al. (1997). (a) Target pathway (b) Result of the Bayesian network (c) Result of the
proposed method.

network contains 45 genes and the partial pathway
registered in KEGG is shown inFig. 6(a). Fig. (b) and
(c) are the resulting networks ofImoto et al. (2002a,b)
and the proposed method respectively. The edges in
the dotted circles can be considered as the correct
edges. We can model some correct relations by using
the proposed method. We denote the correct estima-
tion by the circle next to edge. The triangle represents
either a misdirected edge or an edge skipping at most
one gene. The Christ-cross is wrong estimation.

Our second example is the metabolic pathway re-
ported byDeRisi et al. (1997). This network contains
57 genes and the target pathway is partially shown in
Fig. 7(a). It is difficult to estimate the metabolic path-
way from cDNA microarray data. However, our model
can detect some correct relations.

Comparing with the Bayesian network and nonpara-
metric regression, the number of false positives of the
proposed method inFigs. 6(c) and 7(c)is much smaller
than those inFigs. 6(b) and 7(b). We observed that the
Bayesian network and nonparametric regression can
work well in many cases. However, when there is a
cyclic gene regulation, the Bayesian network and non-
parametric regression model tends to estimate many
false positives in the cyclic regulation. In such case,
the proposed method can reduce the number of false
positives and estimate gene regulations effectively.

6. Discussion

In this paper, we proposed a new statistical gene
network estimation method based on the dynamic
Bayesian network and nonparametric regression
model. The advantages of our proposed method com-
pared with other network estimation method such as

the Bayesian and Boolean networks are as follows:
Our model can take time information into account
naturally. Our model can analyze the microarray data
as the continuous data without the extra data pretreat-
ments such as discretization. Even nonlinear relations
can be detected and modeled by our proposed method.

The simulation of genetic system is one of the cen-
tral topics in systems biology. Since the simulation is
based on the biological knowledge, our network esti-
mation method can support the biological simulation
by constructing the unknown regulations. In this paper,
we only demonstrate the model based on the first-order
Markov relation between time points described in
Fig. 1. However, the relationship between time points
is arbitrary and we can choose the time dependency
structure based on our proposed criterion. Further-
more, when some genes form a protein complex, their
expression levels probably change simultaneously.
Therefore, the use of a direct graph for representing
a protein-protein complex is not suitable. We would
like to investigate these topics as our future paper.
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