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Abstract

We propose a dynamic Bayesian network and nonparametric regression model for constructing a gene network from time
series microarray gene expression data. The proposed method can overcome a shortcoming of the Bayesian network model in the
sense of the construction of cyclic regulations. The proposed method can analyze the microarray data as a continuous data anc
can capture even nonlinear relations among genes. It can be expected that this model will give a deeper insight into complicated
biological systems. We also derive a new criterion for evaluating an estimated network from Bayes approach. We conduct Monte
Carlo experiments to examine the effectiviness of the proposed method. We also demonstrate the proposed method through the
analysis of theSaccharomyces cerevisiae gene expression data.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction networks, while a real gene regulation mechanism has
cyclic regulations. Recently, the dynamic Bayesian
The development of microarray technology pro- network modelBilmes, 2000; Friedman et al., 1998;
vides us a huge amount of gene expression data andOng et al., 2002; Someren et al., 2002)s been pro-
a new perspective of the analysis of whole genome posed for constructing a gene network with cyclic reg-
mechanism. The estimation of a gene network from ulations. The dynamic Bayesian network is based on
cDNA microarray gene expression data becomes onetime series data. Usually the data is discretized into
of the important topics in the field of bioinformatics several classes. Therefore, the resulting network of the
and can be viewed as the first step of systems biology. dynamic Bayesian network model depends strongly
The use of the Bayesian network modetiedman on the setting of the thresholds for discretization, and,
et al., 2000; Imoto et al., 2002a,b; Pe’er et al., 2001) unfortunately, the discretization leads to information
for estimating a gene network from cDNA microarray loss.Imoto et al. (2002a,bproposed the network es-
gene expression data has received considerable attentimation method based on the Bayesian network and
tion and many successful investigations have been re-the nonparametric regression for a solution to avoid
ported. However, a shortcoming of the Bayesian net- the discretization and for capturing nonlinear relations
work model is that this model cannot construct cyclic among genes.
In this paper, we extend the Bayesian network
~* Corresponding author. and nonparametric regression model to the dynamic
E-mail address: miyano@ims.u-tokyo.ac.jp (S. Miyano). Bayesian network model, which can construct cyclic
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regulations when we have time series gene expression

data. We can include the information of time delay
into the proposed model naturally and the model can

extract even nonlinear relations among genes auto-

matically. For constructing a gene network with cyclic

regulations based on time series gene expression data,

an ordinary differential equation modéChen et al.,
1999; De Hoon et al., 20033 an alternative method.
However, most implementations using this model are
based only on linear systems. They are probably un-
suitable for capturing complex phenomena. We derive
a new criterion for choosing an optimal network from
the Bayesian statistical point of view (s&erger,
1985. The proposed criterion can optimize the net-
work structure, which gives the best representation of

the gene interactions described by the data with noise.

The efficiency of the proposed method are shown
through the analysis of th&accharomyces cerevisiae
gene expression data.

2. Dynamic Bayesian network and nonparametric
regression

Let X ben x p microarray gene expression data
matrix, wherez and p are the numbers of microarrays
and genes, respectively. In the context of Bayesian
networks, a gene is considered as a random variable
When we model a gene network by using statistical
models described by the density or probability func-
tion, the statistical model should incluge random
variables. However, we have onlysamples ana is
usually much smaller thap. In such case, the infer-
ence of the model is quite difficult or sometimes im-
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Fig. 1. Example of a network containing a cyclic regulation. The
network (left) contains a cycl&; — X2 — X4 — X5 — Xj.

A Bayesian network model cannot treat such a network. On the
other hand, the dynamic Bayesian network can construct a cyclic
regulation by dividing states of a gene by time points (right).

follows:

P(X11, ..., Xnp) = P(X1) P(X2|X71) X -

X P(Xn|Xn—l)v (l)

where X; = (Xi1,..., Xip)" is a random variable
vector of p genes at time.

For each time slice, we construct a network repre-
senting gene regulations. As is shownHig. 2, we
assume the network structure is stable through all time
points. Taking these gene regulations, the conditional
probability P(X;|X;_1) can also be decomposed into

.the product of conditional probabilities of each gene

given its parent genes, of the form

P(X;|X;-1) = P(X;1|Pi—1,1) x --- X P(Xip| Pi-1,p),
2

whereP;_, ; is the state vector of the parent genes of

possible, because the model has many parameters andth gene at time — 1.

the number of samples is not enough for estimating

The Egs. (1) and (2hold when we use the den-

the parameters. A Bayesian network model has beensity function instead of the probability measure. From

advocated in such modeling.

While Bayesian networks are very effective for an-
alyzing microarray data, they stand only when there
are no cyclic dependencies. Dynamic Bayesian net-
works overcome this problem (s€&. 1). In the con-
text of the dynamic Bayesian networks, we consider
the time series data and tli#n row vectorx; of X
corresponds to the states pfgenes at time. As
for the time dependency, we consider the first order
Markov relation described ifig. 2 Under this con-
dition, the joint probability can be decomposed as

Eq. (1) we have
flx1g, ...

s Xnp) = f1(x1) fa(x2lx1) x ---
X fn(xn |xn—l)~ (3)
)

Suppose thatp; ; ; = (p;j_)lyl,... ’pi—l,q_/)T is a

g;-dimensional observation vector of parent genes of
jth gene at timeé — 1. TheEq. (2)can be rewritten as

Jilxilxi—1) = g1(xi1lpi_1.1) X -+ x gp(XiplPi_1, p)-

(4)
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Fig. 2. Graphical view of a dynamic Bayesian network model.
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By su_bstituting (4) into (3), we have a d)_/r_1amic Wherey(’) . yi(é)k are coefficient parameters and

Bayesian network model described by densities 0 G) : ;
BP0, ,bﬂjjkk(-)} is the prescribed set of basis

Fx1te -+ xp) functions. Then we define a dynamic Bayesian net-

work and nonparametric regression model of the form
= f1(x1) fo(x2x1) X -+ X fo(nlXn1) P 9

see. s Xnp; 0G) =
= faten [ erGeialpios) - 8piplPioy, ) Joas .. - xpi fe) = J1(x1)

i=2 (xij — 1(pi_g, )
o 111 zxp{— s,
= A [] i]‘[gj(xmp,»l, ,-)} 2o /

j=1li=2

wherefg is the parameter vector included in the model

Hence, a crucial problem for modeling a gene net- and u(p;_1 ;) = m,l(pf")1 D+ o+ mjg; (pl 1q,)
work based on the dynamic Bayesian network is how When jth gene has no parent gene&p, 1) is re-

to construct the conditional densitigg(xij| p;_1 ;). TO sulted in the constant ;.

construct this density function, we assume a nonpara-  We assume (x1) = g1(x11) x- - -x g1(x1,) and the

metric additive regression model with Gaussian noise, joint density f(x11, . .. , xnp; 6c) can then be rewritten
as

Xij = mjl(pfj_)l,l) + -+ mjg; (pfj_)l,qj) + eij,
fxa1, ..., xnp; 0G)

where ¢j; depends independently and normally on

mean O and variance?. That is, gi(xijlp;_ 11) is

a density of Gaussian distribution. Hewgy(-) is a j

smooth function frontk to R and can be expressed

by using the linear combination of basis functions

n
g1(x1)) [ [ &(xiilpiza i 0))

1 i=2

Il
. :%

n

8j(xijlpi—1,j: 0, (%)
1

I
I~

1i

~.
Il

ka(p, ) Z ),(/)b(/I)((pl(/)l D k=1....q; wherepg; = 0. Thus,g;(xij|p;_1 ;; 8;) represents the
' local structure ofjth gene and its parent genes.
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3. Derivation of a criterion for selecting networks

The dynamic Bayesian network and nonparametric
regression model introduced in the previous section
can be constructed when we fix the network structure
and can be estimated by a suitable procedure. How-
ever, gene networks are generally unknown and we
should estimate optimal networks based on the data.
This problem can be viewed as a statistical model
selection problem (see e.gdkaike, 1973; Burnham
and Anderson, 1998; Konishi, 1999; Konishi and
Kitagawa, 199h We solve this problem from the
Bayesian statistical approach and derive a criterion
for evaluating the goodness of the dynamic Bayesian
network and nonparametric regression model.

Here we focus on a posterior probability of a net-
work G since the optimal network is considered to
maximize it. Letr(6c|A) be a prior distribution on the
parametedg in the dynamic Bayesian network and
nonparametric regression model and lettd@c |A) =
O(n). The marginal likelihood can be represented as

/ fx11, ..., xnp; OG)m(0|A) dbG.

Thus, when the data is given, the posterior probability
of the networkG is

ﬂpost(G|X)
_ 7(G) [ flx11, ..., Xnp; 0G)7(0G|A) dog
Y6 {m(G) [ flx1, ... xnp; 0c)T(0GIA) diG}
(6)

where 7(G) is the prior probability of the network
G. The denominator of6) does not relate to model
evaluation. Therefore, the evaluation of the network
depends on the magnitude of numerator. Hence, we
can choose an optimal network as the maximizer of

(G) f 1, -+ xop: 06)7(6 1) Db

It is clear that the essential point for constructing a
network selection criterion is how to compute the
high dimensional integrallmoto et al. (2002a,b)
used the Laplace approximation for integrals (see
alsoKonishi et al., 2004; Tinerey and Kadane, 1986;
Davison, 198%p and we can apply this technique to
the dynamic Bayesian network and nonparametric
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regression model directly. Hence, we have a criterion,
named BNRGynamic Of the form

BN RCdynamic(G) =

—2log {JT(G)/f(xll, .. Xnp; 0c)m(BG|A) dHG}

(7)
~ —2logn(G) — r log <2n—n)
+log|J;(8c)| — 2nl, (8| X), (8)

wherer is the dimension ofg,

[, (0c|X)=log f(x11, ..., xnp; 0)/n + logm(fg|A)/n,

_ P{h(0s1X))

Jr(0g) =
»(0G) T
andfg is the mode of;, (8| X). The optimal graph
is chosen such that the criterion BNRfgamic (8) is
minimal.

4. Estimation of gene networks

In this section, we show the concrete strategy for es-
timating a gene network from cDNA microarray time
series gene expression data.

4.1. Nonparametric regression

use the basis function approach for constructing
the smooth functionnj(-) described inSection 2
In this paper we usé-splines (sedde Boor, 1978
as the basis functions. De Boor’s algorithm (sBe,
Boor, 1978 Chapter 10, p. 130 (3)) is a useful method
for computing B-splines of any degree. We use 20
B-splines of degree 3 with equidistance knots (see
also, Imoto and Konishi, 2003; Dierckx, 1993; Eiler
and Marx, 1996for the details ofB-spline). Fig. 3
shows an example of &-spline smoothed estimate.
We consider a graph gepe> geng and estimate a
functional structure represented by a thin curve based
on our method.
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gene1

Fig. 3. Fitting a B-spline curve (thick curve) to simulated data.
Thin curves are weighte®-splines. The thick curve is obtained
by summing these weighteB-splines.

4.2. Prior distribution on the parameter

For the prior distribution on the parametgs, sup-
pose that the parameter vectéysare independent one

another, the prlor distribution can then be decomposed

asn(fg|A) = [];_17m;(0;Ir;). Suppose that the prior
distribution 7 ;(8;|A ;) is factorized asr;(0;|r;) =

where BNR(é’)namlc is a local criterion score ofth
gene. This decomposmon enables us to avoid the
complexity of estimating the-dimensional function.

BNRCY s defined by

‘dynamic

BNRCY

dynamic =

_2.09{ [

: 2
~ —2logr” —r; log <—n)
n

2n|§fj?(i9 i1X),

T giilpioy ji 0j>nj<01|xj>doj}
i=1

+1log|/” 8))] -

wherer; is the dimension od;,

n

> logg;(xijlpi_y ;; 8))/n +logm(8;[x,)/n,

i=1

19;1X) =

_ PUu)60)

(./) (
/ 90,007

and#; is the mode oﬂ(’)(o 1 X). Herex”) are prior

]'[k 1 Tik(PjklAjk), whererj, are hyperparameters We probabﬂmes satisfying

use a singulaMj, variate normal distribution as the

prior distribution onyji,

27\ ~Mik=2)/2 12
) Kl

Tik(YjklAj) = <m
i

niik
X exp(—ijkaKjkyjk> ;

where Kjkx is an Mk x Mik symmetnc posi-
tive semidefinite matrix satlsfylngkaKJkylk =

ZM‘k 2 - Zy(J)lk + )/‘f/)z,()2 This setting of the

prior distribution onég is the same asmoto et al.
(2002a,b)and the details are in those papers.

4.3. Proposed criterion

By using the prior distributions iBection 4.1 the
BNRCgynamic can be decomposed as follows:

p
BNRCaynamic= »_ BNRCY) . mic )
j=1

)4

Z logz") = logn(G).
=1

We set the prior probability of local structuré” as

7P = exp{—#(parent genes ofth gena}.
4.4. Algorithm for learning network

By using the dynamic Bayesian network and non-
parametric regression model together with the pro-
posed criterion, BNRgynamic We can formulate the
network learning process as follows: it is clear from
(5) and(9) that the optimization of network structure is
equivalent to the choices of the parent genes that regu-
late the target genes. However, it is a time-consuming
task when we consider all possible gene combinations
as the parent genes. Therefore, we cut down the learn-
ing space by selecting candidate parent genes. After
this step, a greedy hill-climbing algorithm is employed
for finding better networks. Our algorithm can be ex-
pressed as follows:
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Step 1 (Preprocessing stage). We make the p ma- Table 1

trix whose (i, j)th element is the BNR&’;namic score Result of Monte Carlo simulations

of the graph “gene— gene” and we define the can- s=8 s=12  s=16  s=20
didate set of parent genes of gerthat gives small  (a) Sensitivity ~ 0996 0971 0.925 0.877
BNRCY  scores. (b) Specificity 0697  0.782 0.829 0.851

‘dynamic

Step 2 (Learning stage). For a greedy hill-climbing
algorithm, we start form the empty network and repeat &:.10: 25 for €;4, £;5 ande; 7 ands/2 for ¢; g, respec-
the following steps: tively. As for generating the data, we sat; = 0 as

_ a start point and generate 150 observations for each
Step 2.1: For gengimplement one from two pro-  yariable. After generating the data, we remove first
cedures thaadd a parent genedelete a parent 50 observations and use remained 100 observations

gene, which gives smaller BNFéQamicscore. (i.e.i = 51,...,150) for estimating a network. We
Step 2.2: Repeat Step 2.1 until we find the best set sets to 8, 12, 16, 20 and generated 1000 datasets for

of parent genes ofth gene. each case. We observed that wheis set to 12, the
Step 2.3: Repeat Step 2.1 and 2.2 for all genes.  data seems to be closest to the real microarray data.
Step 2.4: We choose the optimal network that gives ~ Table 1shows “sensitivity” and “specificity” of our
the smallest BNRGyanmic Score. method under each setting. Here sensitivity and speci-
ficity are defined as follows:

#correctly estimated edges
#all edges in the target network

5.1. Monte Carlo simulation #correctly estimated edges

specificity= : .
. . #all estimated edges
Before analyzing real gene expression data, we

conduct Monte Carlo simulations to examine the It may seem somewhat strange that the results of the
properties of our method. We set an artificial network data with large noise indicates high specificity. We
shown inFig. 4(a) and suppose functional relation- presume the reason is that when the volume of system
ships between nodes #ig. 4(b) The noises; ; are noise is small, most variables seem to be related each
independently and normally distributed with mean O other. Therefore, the number of false positives for the
and standard deviationfor ¢; 1, €; 2, € 3, €i.6, €i,0 and data with large noise is relatively smaller than those

5. Computational experiment sensitivity=

Ti—15 t €1

Tip = Ti—11tE&i2

ri3 = —0.6x;_12+2i—14+Ei3
Li4 = &4

Ti5 = —Xi-1,3+Eis5

rie = —Ti—13 T Ti—1,8TEi6
Tir = Ti-16tEi7

g = —h/|zic17|+20+eig
Tig = —2x-17+Ei9

2

Ti10 = 0.]11fi71.7*50+51)|()

(a) (b)

Fig. 4. Monte Carlo simulation. (a) Target network, (b) functional structure.
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edge #
X3 - X4 18
X5 — Xg | 228
X5 - X4 36
Xs— Xg | 44
X6 — X4 33
XG — .{YS 76
Xg — Xl 271
Xg - X2 12
Xg — )(4 16
Xg — X5 46
Xs — X7 91
Xg - X9 251

() (b)

Fig. 5. Result of the Monte Carlo simulations=£ 12). (a) The
number of correctly estimated edges, (b) the number of wrongly
estimated edges.

for the data with small noise. Note that the resulting

network of the data with small noise contains more

true positives than that of the data with large noise.
Fig. 5shows a result of our simulations foe= 12.
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exist aroundXg, because the function betwe&n and

Xg is somewhat complex and indifferentiableXgt =

0. Also, our method assumes the relationship between
genes is smooth. However our method estimated this
relation 571 times in 1000 networks. We observe that
our method works well when the true network con-
tains even cyclic regulations and nonlinear complex
dependencies.

5.2. Real data application

We demonstrate our proposed method through the
analysis of thes cerevisiae cell cycle gene expression
data collected bgpellman et al. (1998We also apply
the Bayesian network and nonparametric regression
model(Imoto et al., 2002a,kgnd compare the results.
This data contains two short time series (two time
points; cIn3, clb2) and four medium time series (18,
24, 17 and 14 time points; alpha, cdcl15, cdc28 and
elu). In the estimation of a gene network, we use four
medium time series. For combining four time series,
we ignore the first observation of the target gene and

Each number next to an edge indicates how often the last one of parent genes for each time series when we

edge appeared in the resulting 1000 netwdfig. 5(b)

fit the nonparametric regression model.

is the list of false positives. Edges that are estimated At first, we focus on the cell cycle pathway com-
less than 10 times are ignored. We succeeded in con-piled in KEGG databasehf{tp://www.genome.ad.jp/

structing a cyclic regulatiorX; — X2 — X3 —
X5 — X3 in 966 networks. Most false positive edges

@ (b)

(@)

Fig. 6. Cell cycle pathway compiled in KEGG. (a) Target pathway (b) Result of the Bayesian network (c) Result of the proposed method.

kegg). The target network is around CDC28
(YBR160w; cyclin-dependent protein kinase). This
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G

(EDHD

GDHD)
EDHD
(a)
Fig. 7. Metabolic pathway reported HyeRisi et al. (1997)(a) Target pathway (b) Result of the Bayesian network (c) Result of the
proposed method.

network contains 45 genes and the partial pathway the Bayesian and Boolean networks are as follows:
registered in KEGG is shown iRig. 6(a) Fig. (b) and Our model can take time information into account
(c) are the resulting networks @hoto et al. (2002a,b)  naturally. Our model can analyze the microarray data
and the proposed method respectively. The edges inas the continuous data without the extra data pretreat-
the dotted circles can be considered as the correctments such as discretization. Even nonlinear relations
edges. We can model some correct relations by using can be detected and modeled by our proposed method.
the proposed method. We denote the correct estima- The simulation of genetic system is one of the cen-
tion by the circle next to edge. The triangle represents tral topics in systems biology. Since the simulation is
either a misdirected edge or an edge skipping at mostbased on the biological knowledge, our network esti-
one gene. The Christ-cross is wrong estimation. mation method can support the biological simulation
Our second example is the metabolic pathway re- by constructing the unknown regulations. In this paper,
ported byDeRisi et al. (1997)This network contains  we only demonstrate the model based on the first-order
57 genes and the target pathway is partially shown in Markov relation between time points described in
Fig. 7(a) It is difficult to estimate the metabolic path- Fig. 1L However, the relationship between time points
way from cDNA microarray data. However, our model is arbitrary and we can choose the time dependency
can detect some correct relations. structure based on our proposed criterion. Further-
Comparing with the Bayesian network and nonpara- more, when some genes form a protein complex, their
metric regression, the number of false positives of the expression levels probably change simultaneously.
proposed method iRigs. 6(c) and 7(cs much smaller ~ Therefore, the use of a direct graph for representing
than those irFigs. 6(b) and 7(b)We observed thatthe a protein-protein complex is not suitable. We would
Bayesian network and nonparametric regression canlike to investigate these topics as our future paper.
work well in many cases. However, when there is a
cyclic gene regulation, the Bayesian network and non-
parametric regression model tends to estimate many

false positives in the cyclic regulation. In such case, _ _ _
the proposed method can reduce the number of falseAka|ke, H., 1973. Information theory and an extension of the
prop maximum likelihood principle. In: Petrov, B., Csaki, F. (Eds.),

positives and estimate gene regulations effectively. Proceedings of the 2nd International Symposium on Information
Theory. Akademiai Kiado, Budapest, pp. 267-281.
Berger, J., 1985. Statistical Decision Theory and Bayesian
. . Analysis. Springer-Verlag, New York.
6. Discussion Bilmes, J., 2000. Dynamic bayesian multinets. In: Proceedings of
the 16th Conference on Uncertainty in Artificial Intelligence,
In this paper, we proposed a new statistical gene  Stanford University, CA, pp. 38-45. _
network estimation method based on the dynamic Burnham, K., Anderson, D., 1998. Model Selection and Inference,

. . . A Practical Information-Theoretical Approach. Springer-Verlag,
Baye5|an network and nonparametrlc regression New York PP pring 9

model. The advantages of our proposed method com-chen, T., He, H., Church, G., 1999. Modeling gene expression
pared with other network estimation method such as  with differential equations. Pacif. Symp. Biocomput. 4, 29-40.
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