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We propose a statistical method for estimating a gene network based on Bayesian net-
works from microarray gene expression data together with biological knowledge including
protein-protein interactions, protein-DNA interactions, binding site information, existing
literature and so on. Microarray data do not contain enough information for constructing
gene networks accurately in many cases. Our method adds biological knowledge to the
estimation method of gene networks under a Bayesian statistical framework, and also
controls the trade-off between microarray information and biological knowledge automat-
ically. We conduct Monte Carlo simulations to show the effectiveness of the proposed
method. We analyze Saccharomyces cerevisiae gene expression data as an application.
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1. Introduction

In recent years, a large amount of gene expression data has been collected. Es-
timating a gene network that shows regulatory relationships between genes has
become one of the central topics in the field of bioinformatics. Several methodolo-
gies have been proposed for constructing a gene network based on gene expression
data, such as Boolean networks,1,2,16,37,49 differential equation models7,11,12,37 and
Bayesian networks.14,15,19,20,22,24,25,42 The main drawback for the gene network
construction from microarray data is that while the gene network contains a large
number of genes, the information contained in gene expression data is limited by
the number of microarrays, their quality, the experimental design, noise, and mea-
surement errors. Therefore, estimated gene networks contain some incorrect gene
regulations, which cannot be evaluated from a biological viewpoint. In particular,
it is difficult to determine the direction of gene regulation using gene expression
data only. Hence, the use of biological knowledge, including protein-protein and
protein-DNA interactions,3,5,18,23,27 sequences of the binding site of the genes con-
trolled by transcription regulators,36,45,55 literature and so on, are considered to be
a key for microarray data analysis. The use of biological knowledge has previously
received considerable attention for extracting more information from microarray
data.4,6,20,38,41,43,46,47,48

In this paper, we provide a general framework for combining microarray data
and biological knowledge aimed at estimating a gene network by using a Bayesian
network model. If the gene regulation mechanisms are completely known, we can
model the gene network easily. However, many parts of the true gene network
are still unknown and need to be estimated from data. Hence, it is necessary to
construct a suitable criterion for evaluating estimated gene networks in order to
obtain an optimal network. While criteria, such as BDe8 and MDL,14,51 proposed
previously for evaluating a Bayesian network model, only measure the closeness
between a model and microarray data, we derive a criterion for selecting networks
based on microarray data and biological knowledge. The proposed criterion consists
of two components: One shows the fitness of the model to the microarray data,
while the other reflects biological knowledge, which is modeled under a probabilistic
framework. Our proposed method automatically tunes the balance between the
biological knowledge and microarray data based on our criterion and estimates a
gene network from the combined data.

In Section 2.1, we describe our statistical model for constructing gene networks
and introduce a criterion for evaluating networks in Section 2.2. A statistical frame-
work for representing biological knowledge is described in Section 2.3. In Section
2.4, we illustrate how to model various types of biological knowledge in practice.
Monte Carlo simulations, in Section 3.1, are conducted to show the effectiveness
of the proposed method. We apply our method to Saccharomyces cerevisiae gene
expression data in Section 3.2.
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2. Method for Estimating Gene Networks

2.1. Bayesian network and nonparametric heteroscedastic

regression model

Bayesian networks28 are a type of graphical models for capturing complex rela-
tionships among a large amount of random variables by the directed acyclic graph
encoding the Markov assumption. In the context of Bayesian networks, a gene cor-
responds to a random variable shown as a node, while gene regulations are shown
by directed edges. Thus gene interactions are modeled by the conditional distri-
bution of each gene. We use Bayesian network and nonparametric heteroscedastic
regression models25 for constructing gene networks from microarray data.

Suppose that we have n sets of microarrays {x1, ..., xn} of p genes, where
xi = (xi1, ..., xip)T is a p dimensional gene expression vector obtained by ith mi-
croarray. Here, xij is an expression value of jth gene, denoted by genej , measured
by ith microarray after required normalizations and transformation.44 For cDNA
microarray data, xij is given by log2(Rij/Gij), where Rij and Gij are normalized
intensities of Cy5 and Cy3 for genej measured by ith microarray. The interaction
between genej and its parents is modeled by the nonparametric additive regression
model21 with heterogeneous error variances

xij = mj1(p
(j)
i1 ) + · · ·+ mjqj (p

(j)
iqj

) + εij ,

where p
(j)
ik is the expression value of kth parent of genej measured by ith microarray

and εij depends independently and normally on mean 0 and variance σ2
ij . Here,

mjk(·) is a smooth function constructed by B-splines10,13,26 of the form

mjk(p(j)
ik ) =

Mjk∑

l=1

γ
(j)
lk b

(j)
lk (p(j)

ik ),

where {b(j)
1k (·), ..., b(j)

Mjk,k(·)} is a prescribed set of B-splines and γ
(j)
mk are parameters.

Below we use 20 B-splines of degree 3, that is Mjk = 20. Hence, a Bayesian network
and nonparametric heteroscedastic regression model can be represented as

f(xi|θG) =
p∏

j=1

fj(xij |pij , θj)

for i = 1, ..., n, where θG is a parameter vector and fj(xij |pij , θj) is a density of

Gaussian distribution with mean mj1(p
(j)
i1 ) + · · · + mjqj (p

(j)
iqj

) and variance σ2
ij . If

genej has no parent genes, we use µj and σ2
j instead of mj1(p

(j)
i1 ) + · · ·+ mjqj (p

(j)
iqj

)
and σ2

ij , respectively.
This model has several advantages. Unlike Boolean networks and discrete

Bayesian networks,14,15,19,20,22,42 no discretization of gene expression data, which
leads to information loss, is required. Second, even nonlinear relationships between
genes are automatically extracted based on gene expression data.
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2.2. Criterion for evaluating networks

Some gene networks are partially known, but many mechanisms of gene regulations
are still unknown. Therefore we need to estimate unknown structures of the gene
network from the data. Hence, the construction of a suitable criterion for measuring
the closeness between an estimated gene network and the true one is an essential
problem for statistical gene network modeling. Following the result of Imoto et
al.25, a criterion for evaluating an estimated gene network can be derived from
Bayes approach. At first, we briefly introduce the derivation of their criterion. We
then explain how to extend their criterion to combine microarray data and biological
knowledge.

When we construct a gene network G by using a Bayesian network model, the
posterior probability of the network is obtained as the product of prior probability of
the network π(G) and the marginal likelihood divided by the normalizing constant.
After dropping the normalizing constant, the posterior probability of the network
is proportional to

π(G)
∫ n∏

i=1

f(xi|θG)π(θG|λ)dθG,

where π(θG|λ) is a prior distribution on the parameter vector θG with hyperpa-
rameter vector λ satisfying log π(θG|λ) = O(n). The essential problem for con-
structing a criterion based on the posterior probability of the network is how
to compute the marginal likelihood given by a high dimensional integral. Imoto
et al.25 used the Laplace approximation for integrals9,35,53 and derived a crite-
rion, named BNRChetero (Bayesian network and Nonparametric heteroscedastic
Regression Criterion), of the form

BNRChetero(G) = −2 log π(G) + log
∣∣∣ n

2π
Jλ(θ̂G)

∣∣∣− 2nlλ(θ̂G|X),

where

lλ(θG|X) =
1
n

n∑

i=1

log f(xi|θG) +
1
n

log π(θG|λ),

Jλ(θG) = −∂2{lλ(θG|X)}
∂θG∂θT

G

and θ̂G is the mode of lλ(θG|X).
Suppose that the prior distribution π(θG|λ) is factorized as

π(θG|λ) =
∏

j,k

πjk(γjk|λjk),

where γjk = (γ(j)
1k , ..., γ

(j)
Mjk,k)T is a parameter vector and λjk is a hyperparameter.

We use a singular Mjk variate normal distribution as the prior distribution on γjk,

πjk(γjk|λjk) =
(

2π

nλjk

)−(Mjk−2)/2

|Kjk|1/2
+ exp

(
−nλjk

2
γT

jkKjkγjk

)
,
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where Kjk is an Mjk × Mjk symmetric positive semidefinite matrix satisfying
γT

jkKjkγjk =
∑Mjk

α=3(γ
(j)
αk − 2γ

(j)
α−1,k + γ

(j)
α−2,k)2. This prior is related to the smooth-

ness of the fitted B-splines by tuning the hyperparameter λjk. If we choose λjk

large, the fitted B-spline reduces to a linear function. On the other hand, when we
use a small λjk, the B-spline overfits the data. Therefore the choice of the value
of the hyperparameters is an essential problem for computing the criterion. We
optimize them by minimizing the proposed criterion, BNRChetero.

By using the prior distrubution π(θG|λ) defined above, we then have the de-
composition

BNRChetero = −2 log π(G) +
p∑

j=1

BNRC(j)
hetero.

Here BNRC(j)
hetero is a score for genej and given by

BNRC(j)
hetero = −(

qj∑

k=1

Mjk + 1) log(
2π

n
)−

n∑

i=1

log wij + n log(2πσ̂2
j ) + n

+
qj∑

k=1

{log |Λjk| −Mjk log(nσ̂2
j )} − log(2σ̂2

j )− log |Kjk|+

+
qj∑

k=1

{(Mjk − 2) log

(
2πσ̂2

j

nβjk

)
+

nβjk

σ̂2
j

γ̂T
jkKjkγ̂jk},

where wij , i = 1, ..., n are weights of the heterogeneous error variance σ2
ij = w−1

ij σ2
j

and Λj = BT
jkWjBjk +nβjkKjk with Bjk = (bjk(p(j)

1k ), ..., bjk(p(j)
nk ))T , bjk(p(j)

ik ) =

(b(j)
1k (p(j)

ik ), ..., b(j)
Mjk,k(p(j)

ik ))T , Wj = diag(w1j , ..., wnj) and βjk = σ2
j λjk. The details

of the parameter estimation are described in Imoto et al.25.

2.3. Adding biological knowledge

The criterion BNRChetero(G), introduced in the previous section, contains two
quantities: the prior probability π(G) of the network, and the marginal likelihood of
the data. The marginal likelihood shows the fitness of the model to the microarray
data. The biological knowledge can then be added into the prior probability of the
network π(G).

Let Uij be the interaction energy of the edge from genei to genej and let Uij be
categorized into I values, H1, ..., HI , based on biological knowledge. For example,
if we know a priori that genei regulates genej , we set Uij = H1. However, if we do
not know whether genek regulates genel or not, we set Ukl = H2. We treat the prior
information of each edge independently. Note that 0 < H1 < H2, it is more natural
to choose the network with a large number of H1 edges rather than H2 edges in the
sense of prior information. Our setting, H1 < H2, gives a higher prior probability
to the graph with a lot of H1 edges than to the graph with a lot of H2 edges.
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The total energy of the network G can then be defined as

E(G) =
∑

{i,j}∈G

Uij ,

where the sum is taken over the existing edges in the network G. Under the Bayesian
network framework, the total energy can be decomposed into the sum of the local
energies

E(G) =
p∑

j=1

∑

i∈Lj

Uij =
p∑

j=1

Ej , (1)

where Lj is an index set of parents of genej and Ej =
∑

i∈Lj
Uij is a local energy

defined by genej and its parents. Fig. 2.3 shows an example of a gene network and
its energy.

The probability of a network G, π(G), is modeled by the Gibbs distribution17

π(G) = Z−1 exp{−ζE(G)}, (2)

where ζ (> 0) is a hyperparameter and Z is a normalizing constant called the
partition function

Z =
∑

G∈G
exp{−ζE(G)}.

Here G is the set of possible networks. By replacing ζH1, ..., ζHI with ζ1, ..., ζI ,
respectively, the normalizing constant Z is a function of ζ1, ..., ζI . We call ζj an

gene1
gene2

gene3
gene4

gene5

U13

U35

U24

U45

L3
L4

L5

={1}
={2}

={3,4}

Fig. 1. A gene network and its energy. The index sets L3, L4 and L5 are illustrated and L1 and
L2 are defined by empty sets. The local energies are E3 = U13, E4 = U24 and E5 = U35 + U45.
The total energy of this network is E = E3 + E4 + E5 = U13 + U24 + U35 + U45.
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inverse normalized temperature. By substituting (1) into (2), we have

π(G) = Z−1

p∏

j=1

exp{−ζEj} = Z−1

p∏

j=1

∏

i∈Lj

exp(−ζα(i,j)),

with α(i, j) = k for Uij = Hk. Hence, by adding biological knowledge into the prior
probability of the network, BNRChetero can be rewritten as

BNRChetero(G, ζ1, ..., ζI) = 2 log Z +
p∑

j=1

{2
∑

i∈Lj

ζα(i,j) + BNRC(j)
hetero}. (3)

We can choose an optimal network under the given ζ1, ..., ζI . Also the optimal
values of ζ1, ..., ζI are obtained as the minimizer of (3). Therefore, we can represent
an algorithm for estimating a gene network from microarray data and biological
knowledge as follows:

Step1: Set the values ζ1, ..., ζI .

Step2: Estimate a gene network by minimizing BNRChetero(G) under the given
ζ1, ..., ζI .

Step3: Repeat Step1 and Step2 against the candidate values of ζ1, ..., ζI .

Step4: An optimal gene network is obtained from the candidate networks obtained
in Step3.

In Step2, we use the greedy hill-climbing algorithm for learning networks as
follows:

Step1: Start from the empty graph.

Step2: For each gene, either add, remove, or reverse an edge, if it leads to a
reduction in the criterion.

Step3: Repeat Step 2 until the value of the criterion reaches a minimum.

The details of the greedy hill-climbing algorithm and the computation of the cri-
terion are shown in Imoto et al.25. Note that the proposed prior probability of the
network can be used for other types of Bayesian network models, such as discrete
Bayesian networks and dynamic Bayesian networks.32,33,39,41,50

The computation of normalizing constant, Z, is intractable even for moder-
ately sized gene networks. To avoid this problem, we compute upper and lower
bounds of the partial function and use them to choose the optimal value of inverse
normalized temperature. An upper bound is obtained by directed graphs that are
allowed to contain cyclic graphs. The number of graphs that has b1, b2, ..., bI edges
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of ζ1, ζ2, ..., ζI out of a1, a2, ..., aI edges, respectively, is obtained by

S(b1, ..., bI) =
I∏

i=1

ai

bi!(ai − bi)!
.

The upper bound of Z is then

∑

b1,...,bI

S(b1, ..., bI) exp(−
I∑

i=1

biζi).

Thus the true value of the partition function is not greater than the upper bound. A
lower bound is computed by multi-level directed graphs with following assumptions:
(A1) There is one top gene and (A2) Genes at the same level have a common direct
parent gene. We also consider joined graphs of some multi-level directed graphs
satisfying (A1) and (A2). Since the number of possible graphs is much larger than
those included in the computation, the true value of the partition function should
be greater than the lower bound. Since the optimization of the network structure for
fixed ζ1, ..., ζI does not depend on the value of the partition function, our method
works well in practice. Of course, when the number of genes is small, we can perform
an exhaustive search and compute the partition function completely. However, we
think that the development of an effective algorithm to enumerate all possible
networks or approximate the partition function is an important problem.

As a related work, Segal et al.47 proposed an interesting method for combining
protein-protein interaction data with microarray gene expression data. They mod-
eled protein-protein interaction data based on Markov networks34 and considered
the joint probability of microarray data and protein-protein data for estimating
molecular pathways. Although our model is different from their model, their model
contains a hyperparameter, denoted by α, that plays quite similar role of ζ1 and ζ2.
Similar to our criterion, their joint probability contains the normalizing constant,
which is a function of the hyperparameter, α. While we optimize the hyperparame-
ters by our criterion, they did not compute the normalizing constant and chose the
value of α heuristically.

2.4. Prior design for various biological knowledge

In this subsection, we show some examples of biological knowledge and how to
include them into the prior probability in practice. We consider using two values ζ1

and ζ2 satisfying 0 < ζ1 < ζ2 for representing biological knowledge. Basically, we
allocate ζ1 to a known relationship and ζ2 otherwise. The prior information can be
summarized as a p× p matrix U whose (i, j) element, uij , corresponds to ζ1 or ζ2.
Note that not all prior knowledge can be easily interpreted as binary values.
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Protein-protein interactions
The number of known protein-protein interactions is rapidly increasing and stored
in some public databases such as GRID18 and BIND.3,5 Protein-protein interactions
show at least two proteins that form a complex. Therefore, representing protein-
protein interactions by a directed graph is not suitable. However, they can be in-
cluded in our method. If we know genei and genej create a protein-protein inter-
action, we set uij = uji = ζ1. In such a case, we will decide whether we make a
virtual node corresponding to a protein complex theoretically.40

Protein-DNA interactions
Protein-DNA interactions show gene regulation by transcription factors and can be
modeled more easily than protein-protein interactions. When genei is a transcrip-
tion regulator and controls genej , we set uij = ζ1 and uji = ζ2.

Sequences
Genes that are controlled by a transcription regulator might have a consensus motif
in their promoter DNA sequences. If genej1 ,...,genejn have a consensus motif and
are controlled by genei, we set uij1 = · · · = uijn = ζ1 and uj1i = · · · = ujni = ζ2.
Previously, we used the information of consensus motifs to evaluate estimated gene
networks from a biological viewpoint. This information, however, can be introduced
directly into our method. One straightforward way is the use of known regulatory
motifs kept in public databases such as SCPD45 and YTF.55 As for an advanced
method, Tamada et al.52 proposed a method for simultaneously estimating a gene
network and detecting regulatory motifs based on our method, and succeeded in
estimating an accurate gene network and detecting a true regulatory motif.

Gene networks and pathways
The information of gene networks can be introduced directly into our method by
transforming the prescribed network structures into the matrix U . We can then
estimate a gene network based on U and microarray data. Our method can also use
gene networks estimated by other techniques such as boolean networks, differential
equation models, and so on. Also, some databases, such as KEGG,30,31 contain
several known gene networks and pathways. This information can be used similarly.

Literature
Some research has been performed to extract information from a huge amount of
literature.29 Literature contain various kinds of information including biological
knowledge described above. So we can model literature information in the same
way.
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3. Computational Experiments

3.1. Monte Carlo simulations

Before analyzing real gene expression data, we perform Monte Carlo simulations to
examine the properties of the proposed method. We assume an artificial network
with 20 nodes shown in Fig. 2 (a). The functional relationships between nodes are

1
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8 9 10

11

12

13
14

15 16

17

18

19

20

(a)

g1 = ε1, g2 = .7g1 + ε2 g5 = .7g1 + ε5, g10 = 1/{1 + exp(−4g3)}+ ε10

g3 =

8
<
:
−1 + ε3 (g1 ≤ −.5)
g1 + ε3 (|g1| < .5)
1 + ε3 (g1 ≥ .5)

g6 =

8
<
:

.8g3 + ε6 (g3 ≤ −1)
(g3 + 1)1.5 + ε6 (−1 < |g3| < 0)
1 + ε6 (g3 ≥ 1)

g4 =


.4g1 + 1 + ε4 (|g1| ≤ .3)
(g1 + 1)2 + ε4 (|g1| < .3)

g8 =


.2g3 − 1 + ε8 (g3 ≤ .2)
1.4g3 + ε8 (g3 > .2)

g11 = .7g6 + ε11, g14 = .7g6 + ε14, g15 = 1/{1 + exp(−4g8)}+ ε15

g9 =


.4g3 + 1 + ε9 (|g3| ≤ .3)
(g3 + 1)1.2 + ε9 (|g3| < .3)

g13 =


.4g6 + 1 + ε13 (|g6| ≤ .3)
(g6 + 1)2 + ε13 (|g6| < .3)

g12 =

8
<
:
−1 + ε12 (g6 < −.5)
g6 + ε12 (|g6| ≤ .5)
1 + ε12 (|g6| > .5)

g16 = .8g8 + ε16

g19 = 1/{1 + exp(−4g10)}+ ε19

g20 = 1.1g10 + ε20

g17 =


.2g8 − 1 + ε17 (g8 ≤ .2)
1.4g8 + ε17 (g8 > .2)

g18 =


.4g8 + 1 (|g8| > .3
(g8 + 1)1.2 (g8 ≤ .3)

(b)

Fig. 2. Artificial gene network and functional structures between nodes.
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listed in Fig. 2 (b). The data ware generated from the artificial network of Fig.
2 (a) with the functional structures between nodes shown in Fig. 2 (b). Then the
observations of the child variable are generated after transforming the observations
of the parent variables to mean 0 and variance 1. A network was rebuilt from
simulated data consisting of 50 or 100 observations, which corresponds to 50 or
100 microarrays. Since, recently more microarray data have become available and
it is often the case that we can use more than 100 microarrays. While at the
starting point of the analysis, we have over 6000 genes for yeast, after some pre-
treatments of the data or using some prior knowledge, the number of target genes
is typically less than 50 or so. We consider such a case in this simulation. As for the
biological knowledge, we tried the following situations: (Case 1) we know some
gene regulations (100%, 75%, 50% or 25% out of 19 edges shown in Fig. 2 (a)) and
(Case 2) we know some gene regulations, but some (1, 2, or 3) incorrect edges
are kept in the database. We set {0.5, 1.0} and {ζ1, 2.5, 5.0, 7.5, 10.0} as the
candidate values of ζ1 and ζ2, respectively.

Fig. 4 shows two estimated networks: One is estimated by 100 observations
(microarrays) alone. We use ζ1 = ζ2 = 0.5, i.e. we did not use any prior knowledge
(we denote this network by N0 for convenience). The other is estimated by 100
observations and prior information of 75% gene regulations, i.e. we know 14 correct
relations out of the all 19 correct edges (we denote this network by N1). Edges
appearing in both networks are colored green, while edges appearing in N0 or N1

only are colored blue and red, respectively. By adding prior knowledge, it is clear
that we succeeded in reducing the number of false positives. We also find additional
four correct relationships. Fig. 3 shows the behavior of BNRChetero when ζ1 = 0.5.

21
00

21
50

22
00

22
50

0.5 2.5 5.0 7.5 10

B
N

R
C

he
te

ro

Fig. 3. The behavior of BNRChetero when ζ1 = 0.5. We can find out the optimal inverse normalized
temperature ζ2 is 5.0.
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1
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12

13
14

15 16

17

18

19

20

Without knowledge
With knowledge

Appear in both methods
True edge

Fig. 4. An example of resulting networks based on 100 samples. We used ζ1 = 0.5 and ζ2 = 5.0
that are selected by our criterion (see Fig. 3).

We find that the optimal value of ζ2 is 5.0. From the Monte Carlo simulations, we
observed that ζ2 can be selected by using middle values (depicted by a blue line)
of upper and lower bounds or upper bounds in practice. For the selection of ζ1, we
use the middle value of the upper and lower bounds of the score of our criterion.

Fig. 5 shows the boxplots of the average squared errors (ASEs) that are defined
by

ASE =
100∑

i=1

20∑

j=1

(x∗ij − x̂ij)2,

where x∗ij is the true value of xij , that is x∗i2 is given by 0.7xi1, and x̂ij is the estimate
of xij based on the estimated network. Since we repeated the Monte Carlo simu-
lation 1000 times, each boxplot is obtained from 1000 ASEs. Smaller ASE means
a more accurate estimated network. From Fig. 5, it is clear that by adding prior
information we succeeded in reducing the ASE. The distributions of the number of
true positives and false positives of the estimate networks are shown in Fig. 6. While
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Fig. 5. Boxplots of the average squared errors.

the estimated networks without prior information contain many correct edges, we
observe that the proposed method could reduce the number of false positives even
if we added only a part of true relations.

The results of the Monte Carlo simulations are summarized as follows:

In (Case 1), we obtained networks more accurately as long as we add correct
knowledge. We observed that the number of false positives decreased drastically.
We presume the reason is the nature of directed acyclic graphs. Since a Bayesian
network model is a directed acyclic graph, one incorrect estimate may affect the
relations in its neighborhood. However, by adding some correct knowledge, we can
restrict the search space of the Bayesian network model learning effectively.

In (Case 2), the results depend on the type of incorrect knowledge.
(i) If we use misdirected relations, e.g. gene8 → gene3, as prior knowledge, serious
problems occur. Since microarray data to some degree support the misdirected
relations, they tend to receive a better criterion score.
(ii) If we add indirect relations such as gene1 → gene8, we observed that our
method controlled the balance between this prior information and microarray data
and could decide whether the prior relation is true.
(iii) If irrelevant relations such as gene20 → gene5 are added as prior information,
our method could reject these prior information, because, the microarray data do
not support these relations.
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Fig. 6. Distribution of the number of true positives and false positives of the estimated networks.
Upper three figures show the number of true positives when we use 100%, 75% and 0% prior
information, respectively. Lower three figures show the number of false positives with respect to
100%, 75% and 0%. Note that since 19 edges in the true network, the maximum number of true
positives is 19.
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3.2. Example using experimental data

In this section, we demonstrate our method by analyzing Saccharomyces cere-
visiae gene expression data obtained by disrupting 100 genes, which are almost all
transcription factors. We used the BY4741 (MATa, HIS3D1, LEU2D0, MET15D0,
URA3D0) as the wild type strain and purchased gene disruptions from Research
Genetics, Inc. We focus on five genes, MCM1, SWI5, ACE2, SNF2 and STE12 (see
Table 1) and extract genes that are regulated by these 5 genes from the Yeast Pro-
teome Database.54 Thus, we construct a prior network shown in Fig. 7, based on
the database information. We include the prior network in our Bayesian network
estimation method. That is, the purpose of this analysis is to estimate the gene
network containing above 36 genes from microarray data together with the prior
network. For constructing a Bayesian network with prior knowledge, the simplest
way is to fix the prior edges and learn the other parts of the network based on the
observed data. However, we observed that the score of our criterion, BNRChetero,
of the estimated network learned with fixed prior edges cannot decrease compared
with the optimal one. Fig. 8 shows the estimated gene network using microarray
data only. There are many non-prior edges and many of them are probably false
positives. In addition, we find three misdirected relations: “SWI5 → MCM1”, “HO
→ ACE2” and “STE6 → STE12”. By adding the prior network, we obtain the gene
network shown in Fig. 10. As for the inverse normalized temperatures ζ1 and ζ2, we
set ζ1 = 0.5 and choose the optimal value of ζ2. We also estimated a gene network
based on ζ1 = 1 and found the results described below to be essentially unchanged.

Fig. 9 shows the behavior of BNRChetero with respect to ζ2. We find that the
optimal value of ζ2 is 2.5. Fig. 10 shows the resulting network based on microarray
data and the biological knowledge represented by the prior network in Fig. 7. We
show the edges that correspond to the prior knowledge in black. The edges between
genes that are regulated by the same transcription factor in the prior network are
shown in blue. The red edges do not correspond to the prior knowledge. In particu-
lar, we find that the relationships around MCM1 improve drastically. The network

Table 1. Five transcription factors and their regulating genes.

MCM1 : transcription factor of the MADS box family
MET14, CDC6, MET2, CDC5, MET6, SIC1, STE6, CLN2, PCL2, STE2,
ACE2, MET16,MET3, MET4, CAR1, SWI5, PCL9, CLB1, MET17, EGT2,
ARG5,6, PMA1, RME1, CLB2

SWI5 : transcription factor
CDC6, SIC1, CLN2, PCL2, PCL9, EGT2, RME1, CTS1, HO

ACE2 : metallothionein expression activator
CLN2, EGT2, HO, CTS1, RME1

SNF2 : component of SWI/SNF global transcription activator complex
CTS1, HO

STE12 : transcriptional activator
STE6, FAR1, KAR3, SST2, FUS1, STE2, BAR1, AGA1, AFR1, CIK1
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Fig. 7. Prior knowledge network. The genes that are in each shadowed circle are regulated by the
parent genes.

based on microarray only (Fig. 8) indicates that only SIC1 and ACE2 are regulated
by MCM1. Note that the underlined genes correspond to the prior network infor-
mation. After adding the prior knowledge and optimizing the inverse normalized
temperatures, we find that 10 genes out of 24 genes that are listed as co-regulated
genes of MCM1 in Table 1 are extracted. Also, the relationships around STE12
become clearer. Before adding prior knowledge, the estimated network in Fig. 8
suggests FUS1, AFR1, KAR3, BAR1, MET4, MET16 and MCM1 are regulated by
STE12, while STE12 is controlled by HO, STE6 and MET3. On the other hand,
the network in Fig. 10 shows that STE12 regulates FUS1, AFR1, KAR3, CIK1,
STE2, STE6, HO and MCM1. Note that the three misdirected relations described
above are corrected in Fig. 10. The difference between the inverse normalized tem-
peratures ζ1 = 0.5 and ζ2 = 2.5 is small, because the score of the criterion is added
as 2ζ1 or 2ζ2, when we add an edge that is listed or not listed in the prior network,
respectively. Therefore, microarray data contain this information and we succeeded
in extracting this information with the slight help of the prior network.

We optimized the inverse normalized temperature ζ2 based on the proposed cri-
terion. From the network based on the optimal inverse normalized temperatures,
we can find the diffrence between microarray data and biological knowledge. By
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Fig. 8. Resulting network based on microarray only.
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Fig. 9. Optimization of ζ2. We can find out that the optimal value of ζ2 is 2.5.
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Fig. 10. Resulting network based on microarray data and biological knowledge. The inverse nor-
malized temperatures are selected by our criterion (ζ1 = 0.5, ζ2 = 2.5).

comparing Fig. 8 with Fig. 10, we find that the microarray data reflect the re-
lationship between seven genes (CLN2, RME1, CDC6, EGT2, PCL2, PCL9 and
SIC1) and two transcription factors (MCM1 and SWI5). On the other hand, we
find that there are somewhat large differences between microarray data and the
prior network for the relationship between MCM1 and the thirteen genes that are
in the biggest circle.

4. Discussion

In this paper we proposed a general framework for combining microarray data and
biological knowledge aimed at estimating a gene network. An advantage of our
method is the balance between microarray information and biological knowledge
is optimized by the proposed criterion. By adding biological knowledge into our
Bayesian network estimation method, we succeeded in extracting more information
from microarray data and estimating the gene network more accurately. We believe
that the combination of microarray data and biological knowledge gives a new
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perspective for understanding the systems of living creatures.
We consider the following problems as our future works: (1) In this paper we

focused on how to use biological knowledge together with microarray data. However,
of course, the development of more effective models and criteria for estimating
a gene network is an important problem. (2) Our Bayesian network model does
not treat the experimental conditions. However, real biological processes are often
condition specific. Therefore, considering experimental conditions is an important
problem. (3) Recently, joint learning methods aimed at extracting more effective
information from multi-types of genomic data have recieved considerable attention.
We plan to extend our method so that it can handle such data effectively. (4) When
we use some databases that have various confidence information as the biological
knowledge, we may need to use more hyperparameters for specifying π(G). (5)
From biological knowledge, we deterministically decided the category to which edges
belong, e.g. u11 = ζ1, u12 = ζ2, and so on. However, biological knowledge contains
some errors. In fact, uij can be interpreted as a random variable, and a statistical
model can be constructed for uij . In that sense, our method can be extended as
a Bayesian network estimation method with a self-repairing database mechanism.
We would like to investigate these problems in a future paper.
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