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We propose a new statistical method for constructing a genetic network from microarray
gene expression data by using a Bayesian network. An essential point of Bayesian network
construction is the estimation of the conditional distribution of each random variable.
We consider fitting nonparametric regression models with heterogeneous error variances
to the microarray gene expression data to capture the nonlinear structures between
genes. Selecting the optimal graph, which gives the best representation of the system
among genes, is still a problem to be solved. We theoretically derive a new graph selec-
tion criterion from Bayes approach in general situations. The proposed method includes
previous methods based on Bayesian networks. We demonstrate the effectiveness of the
proposed method through the analysis of Saccharomyces cerevisiae gene expression data
newly obtained by disrupting 100 genes.

Keywords: Genetic network; Bayesian network; nonparametric regression; hetero-
scedasticity.

1. Introduction

Due to the development of the microarray technology, constructing genetic network

receives a large amount of attention in the fields of molecular biology and

bioinformatics.3–5,14,15,20,21,25,26,33,35,41,42,45,47 However, the dimensionality and

complexity of the data disturb the progress of the microarray gene expression data
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analysis. That is to say, the information that we want is buried in a huge amount

of the data with noise. In this paper, we propose a new statistical method for

constructing a genetic network that make capture even the nonlinear relationships

between genes clearer.

A Bayesian network10,19,34 is an effective method in modeling phenomena

through the joint distribution of a large number of random variables. In recent

years, some interesting works have been established in constructing genetic net-

works from microarray gene expression data by using Bayesian networks. Friedman

and Goldszmidt18 discretized the expression values and assumed multinomial distri-

butions as the candidate statistical models. Pe’er et al.42 investigated the threshold

value for discretizing. On the other hand, Friedman et al.21 pointed out that the dis-

cretizing probably loses information from the data. In fact, the number of discretiz-

ing values and the thresholds are unknown parameters, which have to be estimated

from the data. The resulting network strongly depends on their values. Then

Friedman et al.21 considered fitting linear regression models, which analyze the data

in the continuous (see also Heckerman and Geiger29). However, the assumption that

the parent genes depend linearly on the objective gene is not always guaranteed.

Imoto et al.33 proposed the use of nonparametric additive regression models

(see also Green and Silverman23 and Hastie and Tibshirani27) for capturing not

only linear dependencies but also nonlinear structures between genes. In this paper,

we propose a method for constructing the genetic network by using Bayesian net-

works and the nonparametric heteroscedastic regression, which is more resistant to

the effect of outliers. We observe that most gene expression data show heteroscedas-

ticity. Recently, several normalizing or variance stabilizing transformations of gene

expression data have been proposed.17,24,32 So we believe that the modeling, which

takes the effects of the heteroscedasticity and outliers into account, is a key to

analyzing gene expression data and the extraction of valuable information.

Once we set the graph, we have to evaluate its goodness or closeness to the

true graph, which is completely unknown. Hence, the construction of a suitable

criterion becomes the center of attention of statistical genetic network modeling.

Friedman and Goldszmidt20 used the BDe criterion, which was originally derived

by Cooper and Herskovits9 for choosing a graph (see also Heckerman et al.30). The

BDe criterion only evaluates the Bayesian network model based on the multinomial

distributions and Dirichlet priors. However, Friedman and Goldszmidt20 kept the

unknown hyperparameters in Dirichlet priors and we only set up the values experi-

mentally. We investigate the graph selection problem as a statistical model selection

or evaluation problem and theoretically derive a new criterion for choosing a graph

using the Bayes approach (see Berger7). The proposed criterion automatically

optimizes all parameters in the model and gives the optimal graph when we can

score all candidate graphs. However, for inferring a genetic network with a lot of

genes, it is difficult or often impossible to score all candidate graphs. Then we

employ the greedy hill-climbing algorithm for obtaining better genetic networks.

In addition, our proposed method includes the previous methods for constructing
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genetic network based on continuous data and Bayesian networks. To show the

effectiveness of the proposed method, we use the Monte Carlo simulation method.

We also analyze gene expression data of Saccharomyces cerevisiae newly obtained

by disrupting 100 genes.

2. Bayesian Network and Nonparametric Heteroscedastic

Regression Model

2.1. Nonlinear Bayesian network model

Let X = (X1, . . . , Xp)
T be a p-dimensional random variable vector. The nota-

tion aT denotes the transpose of a. We consider a gene as a random variable.

Under the Bayesian network framework, we consider a directed acyclic graph G

and Markov assumption between nodes. The joint probability is then decomposed

into the product of conditional probabilities, that is, P (X1, . . . , Xp) = P (X1|P 1)×

· · · × P (Xp|P p), where P j = (P
(j)
1 , . . . , P

(j)
qj )T is a qj-dimensional vector of parent

variables of Xj in the graph G. This decomposition holds when we use densities

instead of probability measure, f(X1, . . . , Xp) = f1(X1|P 1) × · · · × fp(Xp|P p).

Hence, an essential point for constructing a genetic network based on a Bayesian

network is the construction of each conditional density. In general, the density is

specified by infinite dimensional parameters. We then parameterize the conditional

densities as fj(Xj |P j ; θj) for j = 1, . . . , p and the issue of the construction of

fj(Xj |P j) is recast as the estimation of its parameter θj .

Suppose that we have n sets of array data {x1, . . . , xn} of p genes, where

xi = (xi1, . . . , xip)
T . We model the probabilistic system generating the data by

the parametric model

f(xi1, . . . , xip; θG) =

p
∏

j=1

fj(xij |pij ; θj) , i = 1, . . . , n , (1)

where pij = (p
(j)
i1 , . . . , p

(j)
iqj

)T are qj-dimensional parent observation vectors of xij

in the graph G and θG = (θT
1 , . . . , θT

p )T . For example, when gene2 and gene3

are parent genes of gene1, we see pi1 = (xi2, xi3)
T for i = 1, . . . , n. We extract

information from the data based on this probabilistic model.

Imoto et al.33 proposed the use of nonparametric regression strategy for cap-

turing the nonlinear relationships between xij and pij and suggested that there

are many nonlinear relationships between genes. The linear model therefore hardly

achieves a sufficient result. In many cases, this method can capture the objective

relationships very well. When the data, however, contain outliers especially near

the extreme values of the parent genes, nonparametric regression models some-

times lead to unsuitable smoothed estimates, i.e. the estimated curve exhibits some

spurious waviness due to the effects of the outliers. Since what is estimated is the

system of a living nature, a too complicated relationship is unsuitable. In fact,

this inappropriate case unfortunately sometimes occurs in the analysis of real data.
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To avoid this problem, we consider fitting a nonparametric regression model with

heterogeneous error variances

xij = mj1(p
(j)
i1 ) + · · · + mjqj

(p
(j)
iqj

) + εij , (2)

where εij depends independently and normally on mean 0 and variance σ2
ij and

mjk(·) is a smooth function from R to R. Here R denotes a set of real numbers.

This model includes Imoto et al.’s model33 and, clearly, the linear regression model

as special cases. In general, each smooth function mjk(·) is characterized by the n

values mjk(p
(j)
1k ), . . . , mjk(p

(j)
nk ) and the system (2) contains (n×qj +n) parameters.

Then the number of the parameters in the model is much larger than the number

of observations and it has a tendency toward unstable parameter estimates. In this

paper, we construct the smooth function mjk(·) by the basis functions approach

mjk(p
(j)
ik ) =

Mjk
∑

m=1

γ
(j)
mkb

(j)
mk(p

(j)
ik ) , k = 1, . . . , qj ,

where γ
(j)
1k , . . . , γ

(j)
Mjkk are unknown coefficient parameters and b

(j)
1k (·), . . . , b

(j)
Mjkk(·)

are basis functions. From this representation, the n parameters mjk(p
(j)
1k ), . . . ,

mjk(p
(j)
nk ) are reparameterized by the Mjk coefficient parameters γ

(j)
1k , . . . , γ

(j)
Mjkk.

We strongly recommend the use of nonparametric regression instead of linear

regression, because linear regression cannot decide the direction of the Bayes causa-

lity or leads to the wrong direction in many cases. We show the advantage of the

proposed model compared with linear regression through a simple example. Suppose

that we have data of gene1 and gene2 in Fig. 1(a). We consider the two models gene1

→ gene2 and gene2 → gene1, and obtain the smoothed estimates shown in Figs. 1(b)

and 1(c), respectively. We decide that the model (b: gene1 → gene2) is better than

(c: gene2 → gene1) by the proposed criterion, which is derived in a later section (the

scores of the models are (b) 120.6 (c) 134.8). Since we generated this data from the

true graph gene1 → gene2, our method yields the correct result. Note that in this

case the true model can be represented exactly by Eq. (2) by choosing parameters

suitably. In addition, the true system underlying between gene1 and gene2 is almost

the same as the curve shown in Fig. 1(b). On the other hand, if we fit the linear

regression model to this data, the model (c) is chosen (the scores are (b) 156.0 (c)

135.8). The method, which is based on linear regression, yields an incorrect result

in this case. Consider the case that the relationship is almost linear. Our method

and linear regression can fit the data appropriately. However, it is clearly difficult

to decide the direction of Bayes causality. In such a case, the direction is not strict.

In the error variances, σ2
ij , we assume the structures,

σ2
ij = w−1

ij σ2
j , i = 1, . . . , n; j = 1, . . . , p , (3)

where w1j , . . . , wnj are constants and σ2
j is an unknown parameter. By setting up

the constants w1j , . . . , wnj in reflecting the feature of the error variances, we can
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Fig. 1. Simulated data: The true causality is gene1 → gene2 . (a) Scatter plot of the simulated
data. (b) Smoothed curve of the graph gene1 → gene2 . (c) Smoothed curve of the graph gene2 →

gene1 . These curves are obtained by the proposed method.

represent the heteroscedasticity of the data. Combining (2) and (3), we obtain a

nonparametric regression model with heterogeneous error variances

fj(xij |pij ; γj , σ
2
j ) =

(

wij

2πσ2
j

)1/2

exp



−
wij

2σ2
j

{

xij −

qj
∑

k=1

γT
jkbjk(p

(j)
ik )

}2


 , (4)

where γjk and bjk(p
(j)
ik ) are Mjk-dimensional vectors given by, respectively, γjk =

(γ
(j)
1k , . . . , γ

(j)
Mjkk)T and bjk(p

(j)
ik ) = (b

(j)
1k (p

(j)
ik ), . . . , b

(j)
Mjkk(p

(j)
ik ))T . If the jth gene has

no parent genes in the graph, we specify fj by the normal distribution with mean

µj and variance σ2
j . Hence, we define the Bayesian network and nonparametric
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heteroscedastic regression model by replacing each conditional density in (1) with

(4) or normal density with mean µj and variance σ2
j .

2.2. Criterion for choosing graph

Once we set a graph, the statistical model based on the Bayesian network and

nonparametric heteroscedastic regression can be constructed and be estimated by

a suitable procedure. However, the problem that still remains to be solved is how

we can choose the optimal graph, which gives a best approximation of the sys-

tem underlying the data. Notice that we cannot use the likelihood function as a

model selection criterion, because the value of likelihood becomes large in a more

complicated model. Hence, we need to consider the statistical approach based on

the generalized or predictive error, Kullback–Leibler information, Bayes approach

and so on (see e.g. Akaike,1 Burnham and Anderson,8 Konishi37 and Konishi and

Kitagawa38 for the statistical model selection problem). In this section, we construct

a criterion for evaluating a graph based on our model from Bayes approach.

The posterior probability of the graph π(G|Xn) is obtained by the product of

the prior probability of the graph πG and the marginal probability of the data

divided by the standardizing constant. By removing the standardizing constant,

the posterior probability of the graph is proportional to

π(G|Xn) ∝ πG

∫ n
∏

i=1

f(xi; θG)π(θG|λ)dθG , (5)

where Xn = (x1, . . . , xn)T is an n × p gene profile matrix, π(θG|λ) is the prior

distribution on the parameter θG satisfying log π(θG|λ) = O(n) and λ is the hyper-

parameter vector. Under Bayes approach, we can choose the optimal graph such

that π(G|Xn) is maximum. A crucial problem for constructing a criterion based on

the posterior probability of the graph is the computation of the high dimensional

integration (5). Heckerman and Geiger29 used the conjugate priors for solving the

integral and gave a closed-form solution. To compute this high dimensional inte-

gration, we use Laplace’s approximation12,28,46 for the integrals

∫ n
∏

i=1

f(xi; θG)π(θG|λ)dθG =
(2π/n)r/2

|Jλ(θ̂G)|1/2
exp{nlλ(θ̂G|Xn)}{1 + Op(n

−1)} ,

where r is the dimension of θG, lλ(θG|Xn) =
∑n

i=1 log f(xi; θG)/n+log π(θG|λ)/n,

Jλ(θG) = −∂2{lλ(θG|Xn)}/∂θG∂θT
G and θ̂G is the mode of lλ(θG|Xn). Then we

define the Bayesian network and nonparametric heteroscedastic regression criterion,

named BNRChetero, for selecting a graph

BNRChetero(G) = −2 log

{

πG

∫ n
∏

i=1

f(xi; θG)π(θG|λ)dθG

}

≈ −2 logπG − r log(2π/n) + log |Jλ(θ̂G)| − 2nlλ(θ̂G|Xn) . (6)
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The optimal graph is chosen such that the criterion BNRChetero (6) is minimal.

The merit of the use of the Laplace method is that it is not necessary to consider

the use of the conjugate prior distribution. Hence the modeling in the larger classes

of distributions of the model and prior is attained.

Suppose that the parameter vectors θj are independent of one another. The prior

distribution can then be decomposed into π(θG|λ) =
∏p

j=1 πj(θj |λj). Therefore,

log |Jλ(θG|Xn)| and nlλ(θG|Xn) in (6) result in, respectively,

log |Jλ(θG|Xn)| =

p
∑

j=1

log

∣

∣

∣

∣

∣

−
∂2lλj

(θj |Xn)

∂θj∂θT
j

∣

∣

∣

∣

∣

,

lλ(θG|Xn) =

p
∑

j=1

lλj
(θj |Xn) ,

where lλj
(θj |Xn) = log fj(xij |pij ; θj)/n + log πj(θj |λj)/n. Here λj is the hyper-

parameter vector. Hence by defining

BNRC
(j)
hetero = −2 log

{

∫

πLj

n
∏

i=1

fj(xij |pij ; θj)πj(θj |λj)dθj

}

,

where πLj
are prior probabilities satisfying

∑p
j=1 log πLj

= log πG, the BNRChetero

score is given by the sum of the local scores

BNRChetero(G) =

p
∑

j=1

BNRC
(j)
hetero . (7)

The smoothed estimates based on nonparametric heteroscedastic regression are

obtained by replacing the parameters γj by γ̂j . Noticed that we derive the criterion,

BNRChetero, under the assumption log π(θG|λ) = O(n). If we use the prior density

satisfying log π(θG|λ) = O(1), the BNRChetero score results in Schwarz’s criterion

known as BIC or SIC44. In such case, the mode θ̂G is equivalent to the maximum

likelihood estimate. When lλj
(θj |Xn) has a complex surface, the use of the Laplace

approximation is inappropriate. For our model, we checked the surface of lλj
(θj |Xn)

as much as possible and we observed that the surface is convex. We presume the

reason is the use of basis function approach. Due to the basis function approach, the

number of parameters is relatively small compared with other nonlinear modeling

techniques such as neural networks.

3. Estimating Genetic Network

3.1. Nonparametric regression

In this section we present the method for constructing genetic network in practice

based on the proposed method described above. First we would like to mention the

nonparametric regression model. In the additive model, we construct each smooth

function mjk(·) by B-splines.13,33 Figure 2 is an example of B-splines smoothed
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Fig. 2. The fitted curve to simulated data: The thin curves are B-splines that are weighted by
coefficients and the thick curve is the smoothed estimate that is obtained by the linear combination
of the weighted B-splines.

curve. The thin curves are B-splines that are weighted by coefficients and thick

line is a smoothed curve that is obtained by the linear combination of weighted

B-splines. Radial basis functions6 form an alternative choice for the basis function.

Radial basis function models can describe the interaction of the parent genes

naturally.

In the error variances, we consider the heteroscedastic regression model and

assume the structure (3). Choosing constants w1j , . . . , wnj is an important problem

for capturing the heteroscedasticity of the data. In this paper, we set the

weights

wij = g(pij ; ρj) = exp{−ρj‖pij − p̄j‖
2/2s2

j} , (8)

where ρj is a hyperparameter, p̄j =
∑n

i=1 pij/n and s2
j =

∑n
i=1 ‖pij − p̄j‖

2/nqj . If

we set ρj = 0, the weights are w1j = · · · = wnj = 1 and the model has homogeneous

error variances. If we use a large value of ρj , the error variances of the data, which

exist near the extreme values of the parent genes, are large. Hence, if there are

outliers near the extreme values of the parent genes, we can reduce their effect

and gain the suitable smoothed estimates by using the appropriate value of ρj . In

addition, several choices are possible for setting p̄j in (8). For example, the median of

p1j , . . . , pnj can be used and possibly achieve more robustness against the outliers in

the parent genes. For capturing the heteroscedasticity, the self organizing state space

model, which allows for heterogeneous error variances, is a powerful alternative to

deal with a nonparametric smooth curve estimation. For examples, see Kitagawa36

for a methodological introduction and Higuchi and Kitagawa31 for an illustrative

application suited for the problem dealt with in this paper.
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3.2. Priors

Suppose that the prior distribution πj(θj |λj) is factorized as πj(θj |λj) =
∏qj

k=1 πjk(γjk|λjk), where λjk are hyperparameters. We use a singular Mjk variate

normal distribution as the prior distribution on γjk ,

πjk(γjk|λjk) =

(

2π

nλjk

)−(Mjk−2)/2

|Kjk|
1/2
+ exp

(

−
nλjk

2
γT

jkKjkγjk

)

, (9)

where Kjk is an Mjk × Mjk symmetric positive semidefinite matrix satisfying

γT
jkKjkγjk =

∑Mjk

α=3(γ
(j)
αk − 2γ

(j)
α−1,k + γ

(j)
α−2,k)2.

Next we consider the prior probability of the graph πG. Friedman and

Goldszmit20 employed the prior based on the MDL encoding of the graph. In our

context, the marginal probability of the data is equivalent to the type II likelihood22

with hyperparameters. Thus we set the prior probability of the graph, πG,

πG = exp{−(No. of hyperparameters)} =

p
∏

j=1

exp{−(qj + 1)} =

p
∏

j=1

πLj
.

The justification of this prior is based on Akaike’s Bayesian information criterion,

known as ABIC2, and Akaike’s information criterion, AIC1.

3.3. Criterion

We derived the criterion, BNRChetero, for choosing the graph in a general frame-

work. By using the Eq. (7), the BNRChetero score of the graph can be obtained by

the sum of the local scores, BNRC
(j)
hetero. The result is summarized in the following

theorem.

Theorem 1. Let f(xi; θG) be a Bayesian network and nonparametric hete-

roscedastic regression model given in Sec. 2.1, and let π(γ jk|λjk) be the prior

densities on the parameters γjk defined by (9). Then a criterion for evaluating

graph is given by BNRChetero =
∑p

j=1 BNRC
(j)
hetero, where

BNRC
(j)
hetero = 2(qj + 1) −

( qj
∑

k=1

Mjk + 1

)

log

(

2π

n

)

−

n
∑

i=1

log wij + n log(2πσ̂2
j ) + n

+

qj
∑

k=1

{log |Λjk| − Mjk log(nσ̂2
j )} − log(2σ̂2

j )

+

qj
∑

k=1

{

(Mjk − 2) log

(

2πσ̂2
j

nβjk

)

− log |Kjk|+ +
nβjk

σ̂2
j

γ̂
T
jkKjkγ̂jk

}

,
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with

Λjk = BT
jkWjBjk + nβjkKjk ; (Mjk × Mjk) ,

Bjk = (b
(j)
1k (p

(j)
1k ), . . . , b

(j)
Mjkk(p

(j)
nk ))T ; (n × Mjk) ,

Wj = diag(w1j , . . . , wnj) ; (n × n)

σ̂2
j =

n
∑

i=1

wij

{

xij −

qj
∑

k=1

γ̂
T
jkbjk(p

(j)
ik )

}2/

n .

Here we approximate the Hessian matrix by

log

∣

∣

∣

∣

∣

−
∂2lλj

(θj |Xn)

∂θj∂θT
j

∣

∣

∣

∣

∣

≈

qj
∑

k=1

log

∣

∣

∣

∣

∣

−
∂2lλj

(θj |Xn)

∂γjk∂γT
jk

∣

∣

∣

∣

∣

+ log

∣

∣

∣

∣

∣

−
∂2lλj

(θj |Xn)

∂(σ2
j )2

∣

∣

∣

∣

∣

.

�

3.4. Learning network

In the Bayesian network literature, it is shown that determining the optimal network

is an NP-hard problem. In this paper, we use the greedy hill-climbing algorithm for

learning network as follows:

Step 1. Make the score matrix whose (i, j)th element is the BNRC
(j)
hetero score of

the graph genei → genej .

Step 2. For each gene, implement one of three procedures for an edge: “add”,

“remove”, “reverse”, which gives the smallest BNRChetero.

Step 3. Repeat Step 2 until the BNRChetero does not reduce.

Generally, the greedy hill-climbing algorithm has many local minima and the

result depends on the computational order of variables. To avoid this problem,

we permute the computational order of genes and make many candidate learning

orders in Step 3. Another problem of the learning network is that the search space

of the parent genes is enormously wide, when the number of genes is large. Then

we restrict the set of the candidate parent genes based on the score matrix, which

is given by Step 1.

3.5. Hyperparameters

Consider the nonparametric regression model defined in (4). The estimate θ̂j is

a mode of lλj
(θj |Xn) and depends on the hyperparameters. In fact, the hyper-

parameter plays an essential role for estimating the smoothed curve.

In our model, we construct the nonparametric regression model by 20 B-splines.

We confirmed that the differences of the smoothed estimates against the various

number of the basis functions cannot be found visually. Because when we use a

somewhat large number of the basis functions, the hyperparameters control the
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Fig. 3. The smoothed estimates by the various values of the hyperparameters. (a1): The effect of
hyperparameter βjk = σ̂2

j λjk in the prior distribution of the coefficients of B-splines. This para-
meter can control the smoothness of the fitted curve. (b1) and (c1): The effect of hyperparameter
ρj in the parameter of the error variances. This parameter can capture the heteroscedasticity of
the data and can reduce the effects of outliers.
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smoothness of the fitted curves. Figure 3(a1) shows the scatter plot of YGL237C and

YEL071W with smoothed estimates for 3 different values of the hyperparameters.

The details of the data are shown in later section. Clearly, the smoothed estimate

strongly depends on the values of the hyperparameters. Figure 3(a2) is the behavior

of the BNRChetero criterion of the two genes in Fig. 3(a1). We can choose the

optimal value of the hyperparameter as the minimizer of the BNRChetero and

the optimal smoothed estimate (solid curve in Fig. 3(a1)) can capture the structure

between these genes well. The dashed and dotted curves are near the maximum

likelihood estimate and the parametric linear fit, respectively.

The effect of the weight constants w1j , . . . , wnj is shown in Figs. 3(b1) and

3(c1). If we use the nonparametric homoscedastic regression model33, we obtain

the dashed curve, which exhibits some spurious waviness due to the effect of the

data in the upper-left corner Fig. 3(b1). By adjusting the hyperparameter ρj in

(8), the estimated curve results in the solid curve. The optimal value of ρj is also

chosen by minimizing the BNRChetero criterion (see Figs. 3(b2) and 3(c2)). Of

course, when the smoothed estimate is not affected by outliers, the optimal value

of ρj tends to zero.

Finally, we show the algorithm for estimating the smoothed curve and opti-

mizing the hyperparameters.

Step 1. Fix the hyperparameter ρj .

Step 2. Initialize: γjk = 0, k = 1, . . . , qj .

Step 3. Find the optimal βjk by repeating Steps 3-1 and 3-2.

Step 3-1. Compute:

γjk = (BT
jkWjkBjk + nβjkKjk)−1BT

jkWjk



x(j) −
∑

k′ 6=k

Bjk′γjk′



 ,

for fixed βjk.

Step 3-2. Evaluate: Repeat Step 3-1 against the candidate value of βjk, and choose

the optimal value of βjk, which minimizes the BNRC
(j)
hetero.

Step 4. Convergence: Repeat Step 3 for k = 1, . . . , qj , 1, . . . , qj , 1, . . . until a

suitable convergence criterion is satisfied.

Step 5. Repeat Step 1 to Step 4 against the candidate value of ρj , and choose

the optimal value of ρj , which minimizes the BNRC
(j)
hetero.

4. Computational Experiments

4.1. Monte Carlo simulation

We use the Monte Carlo simulation method to show the effectiveness of our method.

The data were generated from the artificial network of Fig. 4(a) with the functional
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structures between nodes as follows:

X1 = X2
2 + 2 sin(X5) − 2X7 + ε1 , ε1 ∼ N(0, (4s)2) ,

X2 = {1 + exp(−4X3)}
−1 + ε2 , ε2 ∼ N(0, s2) ,

X3 = ε3 , ε3 ∼ N(0, 1) ,

X4 = X2
5/3 + ε4 , ε4 ∼ N(0, (4s)2) ,

X5 = X3 − X2
6 + ε5 , ε5 ∼ N(0, (4s)2) ,

X6 = ε6 , ε6 ∼ N(0, 1) ,

X7 =











−1 + ε7 , (X8 ≤ −0.5) ,

X8 + ε7 , (−0.5 < X8 ≤ 0.5) ,

1 + ε7 , (0.5 < X8) , ε7 ∼ N(0, (2s)2),

X8 = exp(−X4 − 1)/2 + ε8 , ε8 ∼ N(0, (2s)2) ,

X9 = ε9 , ε9 ∼ N(0, 1) ,

X10 = cos(X9) + ε10 , ε10 ∼ N(0, (4s)2) ,

where s is a constant. After transforming the observations of the parent variables

to mean 0 and variance 1, then the observations of the child variable are generated.

We generate 100 observations from this artificial network and our aim is to

rebuild the network in Fig. 4(a) from the simulated data. We use two different

3
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Fig. 4. The results of the Monte Carlo simulations. (a) True network. (b) Result for s = 0.2.

(c) Result for s = 0.1. The number next to edge represents the number of estimated connections
from 1000 Monte Carlo experiments. The percentage includes the information of the edge direction.
For example, in s = 0.2, the connection between X5 and X1 appeared 958 times from 1000 Monte
Carlo experiments and those 97% is the correct direction (from X5 to X1).
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Table 1. The false positives of the Monte Carlo simulations. The number
attached after node name is the number of estimated connection without
direction information and the percentage is the direction information. For
example, in s = 0.2, the proposed method estimated the relationship “X1
→ X4” or “X1 ← X4” 15 times from 1000 Monte Carlo simulations and
87 percent of 15 times represents the direction from left to right (“X1 →
X4”).

s = 0.2

X1 – X4 15 87% X6 – X3 325 81%

X6 73 99% X9 190 53%

X9 72 99% X7 – X2 12 58%

X10 10 70% X3 32 97%

X2 – X4 20 65% X4 24 71%

X6 71 87% X5 27 85%

X8 65 78% X6 12 98%

X9 120 92% X9 68 96%

X10 27 59% X10 3 67%

X3 – X1 31 55% X8 – X1 1 100%

X4 20 90% X6 139 87%

X8 66 52% X9 146 65%

X9 149 70% X10 – X3 71 87%

X4 – X6 35 51% X4 8 75%

X9 137 95% X6 139 95%

X5 – X2 9 100% X8 83 94%

X8 28 97%

X9 108 100%

X10 6 100%

s = 0.1

X1 – X4 16 100% X6 – X3 308 74%

X6 53 83% X4 4 50%

X9 68 100% X7 – X2 1 100%

X10 1 100% X3 28 100%

X2 – X4 4 100% X4 20 95%

X6 57 91% X5 18 89%

X8 31 97% X6 93 99%

X9 89 96% X9 43 98%

X10 10 80% X8 – X1 1 100%

X3 – X1 23 57% X6 154 81%

X4 5 80% X9 123 77%

X8 58 52% X9 – X6 169 51%

X9 157 69% X10 – X3 81 88%

X4 – X9 172 99% X4 9 67%

X5 – X2 8 75% X6 156 100%

X8 27 100% X7 1 100%

X9 106 100% X8 77 96%

X10 6 100%
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settings of the noise variance, one is s = 0.2 and another is s = 0.1. The observations

from the setting of the noise s = 0.2 are experientially similar to the real microarray

data. The Monte Carlo simulation was repeated 1000 times and we focused on the

number of correct estimations. Figures 4(b) and 4(c) are the results of the Monte

Carlo simulations for s = 0.2 and s = 0.1, respectively.

The results of the Monte Carlo simulations can be summarized as follows: In

the setting of noise variance s = 0.2, our model can rebuild the target network very

well. Table 1 shows the false positives of the Monte Carlo simulations and we can

see the percentages of the false positives are almost less than ten percent. Since

the simulated data is similar to the real microarray data in the setting s = 0.2,

we can expect that our network estimation method can work effectively in the real

data analysis. From Fig. 4(b) and 4(c) and Table 1, the number of true negatives

is much less than the number of false positives. We believe that this tendency is

preferred in the exploratory data analysis. Most false positives are related to X3,

X6 and X9. Those variables are all independent normals. We presume the reason is

similar to the problem of multiple comparisons. It is difficult to obtain a theoretic

solution for this problem. A possible solution is the use of a threshold when we

compare two models, one model with a parent or parents and one model without

a parent. In the setting s = 0.1, our model can rebuild the target network more

precisely, and the number of false positives decrease compared with the result of

s = 0.2.

4.2. Real data analysis

In this section we show the effectiveness of our proposed method through the

analysis of Saccharomyces cerevisiae gene expression data, which is newly obtained

by disrupting 100 genes. Our research group has installed a systematic experimental

method, which observes changes in the expression levels of genes on a microarray by

gene disruption. By using this method, we have launched a project whose purpose

is to reveal the gene regulatory networks between the 5871 genes of Saccharomyces

cerevisiae. Many laboratories have also reported similar projects. We have already

collected a large number of expression profiles from gene disruption experiments

to evaluate genetic regulatory networks. Over 400 mutants are stocked and gene

expression profiles are accumulating.

We monitored the transcriptional level of 5871 genes spotted on a microarray

by a scanner. The expression profiles of over 400 disruptants were stored in our

database. The standard deviation (SD) of the levels of all genes on a microarray was

evaluated. The value of SD represents roughly the experimental error. In our data,

we estimated the value of 0.5 as the critical point of the accuracy of experiments. We

have evaluated the accuracy of those profiles on the base of the standard deviation

of the expression ratio of all genes. 107 disruptants including 68 mutants where the

transcription factors were disrupted could be selected from 400 profiles.
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We used 100 microarrays and constructed a genetic network of 521 genes from

the above data. The 94 transcription factors whose regulating genes have been

clearly identified were found. The profiles of the 521 genes in control by those

94 factors were selected from 5871 profiles.

Bas1p and Bas2p also activate expression of three genes in the histidine biosyn-

thesis pathway. In a gcn4 background, mutations that abolish the BAS1 or BAS2

function lead to a histidine auxotrophy. Previous investigation indicated that Bas1p

and Bas2p are DNA binding proteins required for transcription of HIS4 and these
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Fig. 5. The resulting partial network of the analysis of 521 Saccharomyces cerevisiae genes.
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ADE genes like GCN4.11,16,43 In this paper, we made clear that both genetic rela-

tion. Figure 5 indicates that those ADE genes and histidine biosynethesis genes are

related with BAS1 more directly than GCN4. Unfortunately, the direction of the

edges between BAS1 and ADE genes are reverse. We observe that, however, this

direction is ambiguous and switch easily. In fact, the score of the model includes

the edge from BAS1 to ADE genes is almost equal to that of the selected model.

In such a case, the model averaging technique26 might be useful. The ribose com-

ponent of purine ribonucleotides is derived from ribose 5-P, an inter mediate of the

pentose phosphate cycle. The atoms of the base moiety are contributed by many

compounds. They are added step wise to the preformed ribose. There exist striking

interrelationships with the pathway for histidine synthesis.

Studies on the regulation of the purine biosynthesis pathway in Saccharomyces

cerevisiae revealed that all the genes encoding enzymes required for AMP de novo

biosynthesis are repressed at transcriptional level by the presence of extracellular

purines. ADE genes are transcriptionally activated as well as some histidine bio-

synthesis genes. Especially the fact that expression of HIS4 is related with ADE

genes were known. In our regulated network, HIS4 were related with some ADE

genes closely, and some HIS genes are related with ADE genes like HIS4. The

biosynthesis of the essential amino acid histidine shows in Saccharomyces cerevisiae

shows close connection to purine metabolism, and our result satisfied this fact.

5. Conclusion

In this paper we proposed a new statistical method for estimating a genetic net-

work from microarray gene expression data by using a Bayesian network and

nonparametric regression. The key idea of our method is the use of nonparametric

heteroscedastic regression models for capturing nonlinear relationships between

genes and heteroscedasticity of the expression data. If we have a network that

represents the causal relationship among genes, we can simulate the genetic system

on the computer, e.g. Genomic Object Net.39,40 In this stage, it is required that the

relationships between genes are suitably estimated. In this sense, the proposed hete-

roscedastic model can give an essential improvement, because the previous models

sometimes lead to unsuitable estimates of the systems. We consider the simulation

of biological system as a future work.

An essential problem for network construction is the evaluation of the graph.

We investigated this problem as a statistical model selection or evaluation problem

and derived the new criterion for selecting graph from Bayes approach. Our method

covers the previous methods for constructing genetic networks by using Bayesian

networks and improves them in the theoretical and methodological senses. The

proposed method successfully extracts the effective information and we can find

these information in the resulting genetic network visually. We use the simple

greedy algorithm for learning network. However, this algorithm needs much time

for determining the optimal graph. Hence, the development of a better algorithm
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is one of the important problems and we would like to discuss it in a future

paper.

We showed the effectiveness of our method through the Monte Carlo simulations

and the analysis of Saccharomyces cerevisiae gene expression data and evaluated the

resulting network by comparing with biological knowledge. We construct the genetic

network without using biological information. Nevertheless, the resulting network

includes many important connections, which agree with the biological knowledge.

Hence, we expect that our method can demonstrate its power in the analysis of a

completely unknown system, like the human genome.
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