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Abstract

We propose a statistical method for estimating a gene
network based on Bayesian networks from microarray gene
expression data together with biological knowledge includ-
ing protein-protein interactions, protein-DNA interactions,
binding site information, existing literature and so on. Un-
fortunately, microarray data do not contain enough infor-
mation for constructing gene networks accurately in many
cases. Our method adds biological knowledge to the es-
timation method of gene networks under a Bayesian sta-
tistical framework, and also controls the trade-off between
microarray information and biological knowledge automat-
ically. We conduct Monte Carlo simulations to show the
effectiveness of the proposed method. We analyze Saccha-
romyces cerevisiae gene expression data as an application.

1. Introduction

In recent years, a large amount of gene expression data
has been collected and estimating a gene network has be-
come one of the central topics in the field of bioinfor-
matics. Several methodologies have been proposed for
constructing a gene network based on gene expression
data, such as Boolean networks [1, 2, 32, 42], differen-

tial equation models [7, 10, 11, 32] and Bayesian networks
[13, 14, 17, 18, 20, 22, 23, 37]. Main drawback for the gene
network construction from microarray data is that while the
gene network contains a large number of genes, the in-
formation contained in gene expression data is limited by
the number of microarrays, their quality, the experimen-
tal design, noise, and measurement errors. Therefore, es-
timated gene networks contain some incorrect gene regu-
lations, which cannot be evaluated from a biology view-
point. In particular, the direction of gene regulation is dif-
ficult to decide using gene expression data only. Hence,
the use of biological knowledge, including protein-protein
and protein-DNA interactions [3, 5, 16, 21, 25], sequences
of the binding site of the genes controlled by transcription
regulators [31, 40, 47], literature and so on, are consid-
ered to be a key for microarray data analysis. The use of
biological knowledge has previously received considerable
attention for extracting more information from microarray
data [4, 6, 18, 33, 36, 38, 41].

In this paper, we provide a general framework for com-
bining microarray data and biological knowledge aimed at
estimating a gene network by using a Bayesian network
model. If the gene regulation mechanisms are completely
known, we can model the gene network easily. However,
many parts of the true gene network are still unknown and
need to be estimated from data. Hence, it is necessary to
construct a suitable criterion for evaluating estimated gene
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networks in order to obtain an optimal network. While cri-
teria proposed previously for evaluating a Bayesian network
model only measure the closeness between a model and mi-
croarray data, we derive a criterion for selecting networks
based on microarray data and biological knowledge. The
proposed criterion is conducted by two components: One
shows the fitness of the model to the microarray data and
the other reflects biological knowledge, which is modeled
under a probabilistic framework. Our proposed method au-
tomatically tunes the balance between the biological knowl-
edge and microarray data based on our criterion and esti-
mates a gene network from the combined data. In Section
2.1, we describe our statistical model for constructing gene
networks and introduce a criterion for evaluating networks
in Section 2.2. A statistical framework for representing bi-
ological knowledge is described in Section 2.3. In Section
2.4, we illustrate how to model various types of biological
knowledge in practice. Monte Carlo simulations, in Section
3.1, are conducted to show the effectiveness of the proposed
method. We apply our method to Saccharomyces cerevisiae
gene expression data in Section 3.2.

2. Method for Estimating Gene Networks

2.1. Bayesian network and nonparametric het-
eroscedastic regression model

Bayesian networks [26] are a type of graphical models
for capturing complex relationships among a large amount
of random variables by the directed acyclic graph encoding
the Markov assumption. In the context of Bayesian net-
works, a gene corresponds to a random variable shown as a
node, while gene regulations are shown by directed edges.
Thus gene interactions are modeled by the conditional dis-
tribution of each gene. We use Bayesian network and non-
parametric heteroscedastic regression models [23] for con-
structing gene networks from microarray data.

Suppose that we have � sets of microarrays ���� �������
of � genes, where �� � ����� ���� ����� is a � dimen-
sional gene expression vector obtained by �th microarray.
Here, ��� is an expression value of �th gene, denoted by
gene� , measured by �th microarray after required normal-
izations and transformation [39]. Ordinary, ��� is given by
���������	���, where ��� and 	�� are normalized intensi-
ties of Cy5 and Cy3 for gene� measured by �th microarray.
The interaction between gene� and its parents is modeled
by the nonparametric additive regression model [19] with
heterogeneous error variances
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where �
���
�� is the expression value of �th parent of gene�

measured by �th microarray and ��� depends independently

and normally on mean 0 and variance ���. Here, 
����� is a
smooth function constructed by �-splines [9, 12, 24] of the
form
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and nonparametric heteroscedastic regression model can be
represented as
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for � � �� ���� �, where �
 is a parameter vector and
���������� � ��� is a density of Gaussian distribution with

mean 
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��� ��

���
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� and variance ���. If

gene� has no parent genes, we use �� and �� instead of


����
���
�� � � � � ��
��� ��

���
���
� and ���, respectively.

This model has several advantages. Unlike Boolean net-
works and discrete Bayesian networks [13, 14, 17, 18, 20,
37], no discretization of gene expression data, which leads
to information loss, is required. Second, even nonlinear re-
lationships between genes are automatically extracted based
on gene expression data.

2.2. Criterion for evaluating networks

Some gene networks are partially known, but many
mechanisms of gene regulations are still unknown. There-
fore we need to estimate unknown structures of the gene
network from the data. Hence, the construction of a suitable
criterion for measuring the closeness between an estimated
gene network and the true one is an essential problem for
statistical gene network modeling. Following the result of
Imoto et al. [23], a criterion for evaluating an estimated
gene network can be derived from Bayes approach. At first,
we briefly introduce the derivation of their criterion. We
then explain how extend their criterion for combining mi-
croarray data and biological knowledge.

When we construct a gene network 	 by using a
Bayesian network model, the posterior probability of the
network is obtained as the product of prior probability of
the network ��	� and the marginal likelihood divided by
the normalizing constant. After dropping the normalizing
constant, the posterior probability of the network is propor-
tional to

��	�

� ��
���

����� �
����
�����
�
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where ���
��� is a prior distribution on the parame-
ter vector �
 with hyperparameter vector � satisfying
������
��� � ����. The essential problem for construct-
ing a criterion based on the posterior probability of the net-
work is how to compute the marginal likelihood given by
a high dimensional integral. Imoto et al. [23] used the
Laplace approximation for integrals [8, 30, 45] and de-
rived a criterion, named BNRC����� (Bayesian network
and Nonparametric heteroscedastic Regression Criterion),
of the form
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and ��
 is the mode of ����
���.
Suppose that the prior distribution���
��� is factorized

as
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���
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�� is a parameter vector and
��� is a hyperparameter. We use a singular ��� variate
normal distribution as the prior distribution on ���,
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where ��� is an ��� � ��� symmetric positive semidef-

inite matrix satisfying ���������� �
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Figure 1. A gene network and its energy. The
index sets ��, �� and �� are illustrated and
�� and �� are defined by empty sets. The
local energies are �� =���, �� =��� and ��

= ��� + ���. The total energy of this network
is �= �� + �� + �� = ��� + ��� + ��� + ���.

� ������� �� ��� ������

�

���
���

����� � � ���

�
����
����

�

�
����
���

��������������

where ���� � � �� ���� � are weights of the heterogeneous
error variance ��� � ���

�� �� and �� � ��
�������

�������� with ��� � �	����
���
�� �� ���� 	����
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� ,
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��
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� , �� �

��������� ���� ���� and ��� � �����. The details of the
parameter estimation are described in Imoto et al. [23].

2.3. Adding biological knowledge

The criterion BNRC������	�, introduced in the previous
section, contains two quantities: the prior probability ��	�
of the network, and the marginal likelihood of the data. The
marginal likelihood shows the fitness of the model to the mi-
croarray data. The biological knowledge can then be added
into the prior probability of the network ��	�.

Let ��� be the interaction energy of the edge from
gene� to gene� and let ��� be categorized into  values,
!�� ����!�, based on biological knowledge. For example, if
we know a priori gene� regulates gene� , we set ��� � !�.
However, if we do not know whether gene� regulates gene�
or not, we set ��� � !�. Note that � " !� " !�. The
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total energy of the network 	 can then be defined as

#�	� �
�

��	���


����

where the sum is taken over the existing edges in the net-
work 	. Under the Bayesian network framework, the total
energy can be decomposed into the sum of the local ener-
gies

#�	� �

��
���

�
����

��� �

��
���

#�� (1)

where $� is an index set of parents of gene� and #� ��
����

��� is a local energy defined by gene� and its par-
ents. Figure 1 shows an example of a gene network and its
energy.

The probability of a network 	, ��	�, is naturally mod-
eled by the Gibbs distribution [15]

��	� � %�� �����&#�	��� (2)

where & �' �� is a hyperparameter and % is a normalizing
constant called the partition function

% �
�

��

�����&#�	���

Here � is the set of possible networks. By replacing
&!�� ���� &!� with &�� ���� &�, respectively, the normalizing
constant % is a function of &�� ���� &�. We call &� an inverse
normalized temperature. By substituting (1) into (2), we
have

��	� � %��
��

���

�����&#��

� %��
��

���

�
����

�����&���	����

with (��� �� � � for ��� � !�. Hence, by adding bio-
logical knowledge into the prior probability of the network,
BNRC����� can be rewritten as

	
��������	� &�� ���� &�� �  ���%

�

��
���

�
�
����

&���	�� � 	
��
���
������� (3)

We can choose an optimal network under the given
&�� ���� &�. Also the optimal values of &�� ���� &� are obtained
as the minimizer of (3). Therefore, we can represent an
algorithm for estimating a gene network from microarray
data and biological knowledge as follows:

Step1: Set the values &�� ���� &�.
Step2: Estimate a gene network by minimizing
	
��������	� under the given &�� ���� &�.
Step3: Repeat Step1 and Step2 against the candidate values
of &�� ���� &�.
Step4: An optimal gene network is obtained from the
candidate networks obtained in Step3.

In Step2, we use the greedy hill-climbing algorithm for
learning networks. The details are shown in Imoto et al.
[23]. Note that the proposed prior probability of the network
can be used for other types of Bayesian network models,
such as discrete Bayesian networks and dynamic Bayesian
networks [29, 34, 36, 43].

The computation of partition function, %, is intractable
even for moderately sized gene networks. To avoid this
problem, we compute upper and lower bounds of the par-
tial function and use them for choosing the optimal values
of &�� ���� &�. An upper bound is obtained by directed graphs,
which are allowed to contain cyclic graphs. Thus the true
value of the partition function is not greater than the up-
per bound. A lower bound is computed by multi-level di-
rected graphs with following assumptions: (A1) There is
one top gene and (A2) Genes at the same level have a com-
mon parent gene that is located on one upper level of them.
We also consider joined graphs of some multi-level directed
graphs satisfying (A1) and (A2). Since the number of pos-
sible graphs is much larger than those included in the com-
putation, the true value of the partition function should be
greater than the lower bound. Since the optimization of the
network structure for fixed &�� ���� &� does not depend on the
value of the partition function, our method works well in
practice. Of course, when the number of genes is small, we
can perform an exhaustive search and compute the partition
function completely. However, we think that the develop-
ment of an effective algorithm to enumerate all possible net-
works or approximate the partition function is an important
problem.

2.4. Prior design for various biological knowledge

In this subsection, we show some examples of biological
knowledge and how to include them into the prior proba-
bility in practice. We consider using two values &� and &�
satisfying � " &� " &� for representing biological knowl-
edge. Basically, we allocate &� to a known relationship and
&� otherwise. The prior information can be summarized as
a �� � matrix � whose ��� �� element, )��, corresponds to
&� or &�.

Protein-protein interactions
The number of known protein-protein interactions is
rapidly increasing and kept in some public databases such
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Figure 2. Artificial gene network and functional structures between nodes.

as GRID [16] and BIND [3, 5]. Protein-protein interactions
show at least two proteins form a complex. Therefore,
representing protein-protein interactions by a directed
graph is not suitable. However, they can be included
in our method. If we know gene� and gene� create a
protein-protein interaction, we set )�� � )�� � &�. In such
a case, we will decide whether we make a virtual node
corresponding to a protein complex theoretically [35].

Protein-DNA interactions
Protein-DNA interactions show gene regulations by tran-
scription factors and can be modeled more easily than
protein-protein interactions. When gene� is a transcription
regulator and controls gene� , we set )�� � &� and )�� � &�.

Sequences
Genes that are controlled by a transcription regulator
might have a consensus motif in their promoter DNA
sequences. If gene�� ,...,gene�� have a consensus motif and
are controlled by gene�, we set )��� � � � � � )��� � &�
and )��� � � � � � )��� � &�. Previously, consensus
motifs were often used for the evaluation of estimated gene
networks from a biological viewpoint. This information,
however, can be introduced directly into our method. One
straightforward way is the use of known regulatory motifs
kept in public databases such as SCPD [40] and YTF [47].
As for an advanced method, Tamada et al. [44] proposed
a method for simultaneously estimating a gene network
and detecting regulatory motifs based on our method, and
succeeded in estimating an accurate gene network and
detecting a true regulatory motif.

Gene networks and pathways
The information of gene networks can be introduced

directly into our method by transforming the prescribed
network structures into the matrix � . We can then estimate
a gene network based on � and microarray data. Our
method also can use gene networks estimated by other
techniques such as boolean networks, differential equa-
tion models, and so on. Also, some databases, such as
KEGG [28], contain several known gene networks and
pathways. This information can be used similarly.

Literature
Some research has been performed to extract information
from a huge amount of literature [27]. Literature contain
various kinds of information including biological knowl-
edge described above. So we can model literature infor-
mation in the same way.

3. Computational Experiments

3.1. Monte Carlo simulations

Before analyzing real gene expression data, we perform
Monte Carlo simulations to examine the properties of the
proposed method. We assume an artificial network with 20
nodes shown in Figure 2 (a). The functional relationships
between nodes are listed in Figure 2 (b). A network will be
rebuilt from simulated data consisting of 50 or 100 observa-
tions, which corresponds to 50 or 100 microarrays. As for
the biological knowledge, we tried the following situations:
(Case 1) we know some gene regulations (100%, 75%, 50%
or 25% out of 19 edges shown in Figure 2 (a)) and (Case 2)
we know some gene regulations, but some (1, 2, or 3) in-
correct edges are kept in the database. The candidate values
of &� and &� are ����� ���� and �&�� ��� ���� ���� �����,
respectively.
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Figure 4. An example of resulting networks
based on 100 samples. We used 


�
= 0.5 and



�

= 5.0 that are selected by our criterion (see
Figure 3).

Figure 4 shows two estimated networks: One is esti-
mated by 100 observations (microarrays) alone. We use
&� � &� � ���, i.e. we did not use any knowledge (we
denote this network by *� for convenience). The other
is estimated by 100 observations and prior information of
75% gene regulations, i.e. we know 14 correct relations
out of the all 19 correct edges (we denote this network by
*�). Edges appearing in both networks are colored green,
while edges appearing in *� or *� only are colored blue
and red, respectively. By adding prior knowledge, it is clear
that we succeeded in reducing the number of false positives.
We also find additional four correct relationships. Figure 3
shows the behavior of BNRC����� when &� � ���. We find
that the optimal value of &� is 5.0. From the Monte Carlo
simulations, we observed that &� can be selected by using
middle values (depicted by a blue line) of upper and lower
bounds or upper bounds in practice. For the selection of &�,
we use the middle value of the upper and lower bounds of
the score of our criterion.

The results of the Monte Carlo simulations are summa-
rized as follows:
In (Case 1), we obtained networks more accurately as long
as we add correct knowledge. We observed that the num-
ber of false positives decreased drastically. We presume
the reason is the nature of directed acyclic graphs. Since
a Bayesian network model is a directed acyclic graph, one
incorrect estimate may affect the relations in its neighbor-
hood. However, by adding some correct knowledge, we

can restrict the search space of the Bayesian network model
learning effectively.
In (Case 2), the results depend on the type of incorrect
knowledge.
(i) If we use misdirected relations, e.g. gene� � gene�, as
prior knowledge, serious problems occur. Since microarray
data to some degree support the misdirected relations, they
tend to receive a better criterion score.
(ii) If we add indirect relations such as gene� � gene�, we
observed that our method controlled the balance between
this prior information and microarray data and could decide
whether the prior relation is true.
(iii) If irrelevant relations such as gene��� gene	 are added
as prior information, we observed that our method could re-
ject these prior information, because, the microarray data
do not support these relations.

3.2. Example using experimental data

In this subsection, we demonstrate our method by ana-
lyzing Saccharomyces cerevisiae gene expression data ob-
tained by disrupting 100 genes, which are almost all tran-
scription factors. We focus on five genes, MCM1, SWI5,
ACE2, SNF2 and STE12 (see Table 1) and extract genes
that are regulated by these 5 genes from the Yeast Proteome
Database [46]. Thus, we construct a prior network shown in
Figure 5, based on the database information. We include the
prior network in our Bayesian network estimation method.
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MCM1 : transcription factor of the MADS box family
MET14, CDC6, MET2, CDC5, MET6, SIC1, STE6, CLN2, PCL2, STE2, ACE2, MET16,
MET3, MET4, CAR1, SWI5, PCL9, CLB1, MET17, EGT2, ARG5,6, PMA1, RME1, CLB2

SWI5 : transcription factor
CDC6, SIC1, CLN2, PCL2, PCL9, EGT2, RME1, CTS1, HO

ACE2 : metallothionein expression activator
CLN2, EGT2, HO, CTS1, RME1

SNF2 : component of SWI/SNF global transcription activator complex
CTS1, HO

STE12 : transcriptional activator
STE6, FAR1, KAR3, SST2, FUS1, STE2, BAR1, AGA1, AFR1, CIK1

Table 1. Five transcription factors and their regulating genes.

MET14
YKL001C

CDC6
YJL194W

MET2
YNL277W

CDC5
YMR001C

MET6
YER091C

SIC1
YLR079W

STE6
YKL209C

CLN2
YPL256C

PCL2
YDL127W

STE2
YFL026W

MET16
YPR167C

MET3
YJR010W

MET4
YNL103W

CAR1
YPL111W

PCL9
YDL179W

CLB1
YGR108W

MET17
YLR303W

EGT2
YNL327W ARG5,6

YER069W

PMA1
YGL008C

RME1
YGR044C

SWI5
YDR146C

CLB2
YPR119WACE2

YLR131C

HO
YDL227C

CTS1
YLR286C

SNF2
YOR290C

MCM1
YMR043W

FAR1
YJL157C

KAR3
YPR141C

FUS1
YCL027W

BAR1
YIL015W

AGA1
YNR044W

AFR1
YDR085C

CIK1
YMR198W

STE12
YHR084W

Figure 5. Prior knowledge network. The genes
that are in each shadowed circle are regulated
by the parent genes.
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Figure 6. Resulting network based on microar-
ray only.

That is, the purpose of this analysis is to estimate the gene
network containing above 36 genes from microarray data
together with the prior network. Figure 6 shows the esti-
mated gene network using microarray data only. There are
many non-prior edges and many of them are probably false
positives. In addition, we find three misdirected relations:
“SWI5 � MCM1”, “HO � ACE2” and “STE6 � STE12”.
By adding the prior network, we obtain the gene network
shown in Figure 8. As for the inverse normalized temper-
atures &� and &�, we set &� � ��� and choose the optimal
value of &�. We also estimated a gene network based on
&� � � and found the results described below to be essen-
tially unchanged.

Figure 7 shows the behavior of BNRC����� with respect
to &�. We find that the optimal value of &� is 2.5. Fig-

ure 8 shows the resulting network based on microarray data
and the biological knowledge represented by the prior net-
work in Figure 5. We show the edges that correspond to the
prior knowledge in black. The edges between genes that
are regulated by the same transcription factor in the prior
network are shown in blue. The red edges do not corre-
spond to the prior knowledge. In particular, we find that
the relationships around MCM1 improve drastically. The
network based on microarray only (Figure 6) indicates that
only SIC1 and ACE2 are regulated by MCM1. Note that the
underlined genes correspond to the prior network informa-
tion. After adding the prior knowledge and optimizing the
inverse normalized temperatures, we find that 10 genes out
of 24 genes that are listed as co-regulated genes of MCM1 in
Table 1 are extracted. Also, the relationships around STE12
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Figure 8. Resulting network based on microarray data
and biological knowledge. The inverse normalized tem-
peratures are selected by our criterion (


�
=0.5, 


�
=2.5).

become clearer. Before adding prior knowledge, the esti-
mated network in Figure 6 suggests FUS1, AFR1, KAR3,
BAR1, MET4, MET16 and MCM1 are regulated by STE12,
while STE12 is controlled by HO, STE6 and MET3. On
the other hand, the network in Figure 8 shows that STE12
regulates FUS1, AFR1, KAR3, CIK1, STE2, STE6, HO and
MCM1. Note that the three misdirected relations described
above are corrected in Figure 8. The difference between the
inverse normalized temperatures &� � ��� and &� � ��
is small, because the score of the criterion is added as &�
or &�, when we add an edge that is listed or not listed in
the prior network, respectively. Therefore, microarray data
contain this information and we succeeded in extracting this
information with the slight help of the prior network.

We optimized the inverse normalized temperature &�
based on the proposed criterion. From the network based
on the optimal inverse normalized temperatures, we can find
the gap between microarray data and biological knowledge.
By comparing Figure 6 with Figure 8, we find that the mi-
croarray data reflect the relationship between seven genes
(CLN2, RME1, CDC6, EGT2, PCL2, PCL9 and SIC1) and
two transcription factors (MCM1 and SWI5). On the other
hand, we find that there are somewhat large differences be-
tween microarray data and the prior network for the rela-
tionship between MCM1 and the thirteen genes that are in
the biggest circle.

4. Discussion

In this paper we proposed a general framework for com-
bining microarray data and biological knowledge aimed at
estimating a gene network. An advantage of our method
is the balance between microarray information and biolog-
ical knowledge is optimized by the proposed criterion. By
adding biological knowledge into our Bayesian network es-
timation method, we succeeded in extracting more infor-
mation from microarray data and estimating the gene net-
work more accurately. We believe that the combination of
microarray data and biological knowledge gives a new per-
spective for understanding the systems of living creatures.

We consider the following problems as our future works:
(1) In the real application, we demonstrated how to use the
gene network that is obtained biologically as a prior knowl-
edge. There are various types of biological knowledge we
listed in Section 2.4. It is a very important problem how to
use such knowledge together with microarray data in prac-
tice. (2) From biological knowledge, we deterministically
decided the category to which edges belong, e.g. )�� � &�,
)�� � &�, and so on. However, biological knowledge con-
tains some errors. In fact, )�� can be viewed as a random
variable, and a statistical model can be constructed for )��.
In that sense, our method can be extended as a Bayesian
network estimation method with a self-repairing database
mechanism. We would like to investigate these problems in
a future paper.
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